PhD Qualifying Exam Nuclear Engineering Program

Part 1 – Core Courses (Solve 3 problems only)

9:00 am - 12:30 pm, Oct 30, 2020

(1) Nuclear Reactor Analysis

Consider a 1-D homogeneous reactor placed in a vacuum. To determine the eigenvalue and multigroup flux distributions in this reactor, you can use the multigroup diffusion equations given by

$$-D_{g}\nabla^{2}\phi_{g}(\vec{r}) + \Sigma_{R,g}\phi_{g}(\vec{r}) = \frac{\chi_{g}}{k}\sum_{g'=1}^{G}\nu\Sigma_{fg'}\phi_{g'}(\vec{r}) + \sum_{\substack{g'=1\\g'\neq g}}^{G}\Sigma_{sg'\to g}\phi_{g'}(\vec{r}), \quad g = 1, G$$

- a) (10%) How do you determine a multigroup cross section, e.g., $\Sigma_{R,q}$?
- b) (10%) What is the physical definition of group flux, $\phi_q(\vec{r})$?
- c) (20%) Derive 1-D, 3-group diffusion equations, considering the following conditions:
 - Fission neutrons are generated only in the 1st energy group,
 - fission reaction happens only in the 3rd energy group, and
 - upscattering does NOT occur.
 - Directly coupled downscattering.
- d) (50%) Assuming the same value of extrapolation distance for all energy groups, derive the criticality condition for this reactor using the 3-group diffusion equations you derive in part c.
- e) (10%) Rewrite the equation you obtain in part d in terms of a set of parameters similar to those introduced in the 6-factor formula.

(2) Reactor Thermal Hydraulics

Consider a spherical air bubble rising vertically in a large water pool. At a depth h_1 from the free surface, the bubble has a diameter d_1 . The bubble can be modeled as an ideal gas, and the temperature of the bubble is maintained at a constant *T* throughout the process. The following quantities are known: water density ρ_f , water viscosity μ_f , atmospheric pressure p_0 , gravitational acceleration *g*, the molar mass of air *M*, and the universal gas constant is \overline{R} .

- a. (10%) Draw the force diagram of the bubble, including possible unsteady forces.
- b. (40%) If bubble acceleration and unsteady forces are negligible, develop an expression of the bubble velocity v_b at point 1 using the given quantities. The drag coefficient of the bubble is given by:

$$C_D = \frac{24}{N_{Re}}$$
, where N_{Re} is the particle Reynolds number

- c. (15%) What is the bubble diameter when it arrives at point 2, which is at a depth h_2 from the free surface? You can neglect the surface tension force and partial pressure of water vapor, and assume the bubble's pressure is the same as the hydrostatic head.
- d. (35%) What is the bubble velocity at point 2? Is it greater or smaller compared with that at point 1?

(3) Advanced Nuclear Materials

- 1. (50%) Describe the formation of He bubbles, voids, and cavities in materials.
- 2. (50%) Describe the effect of bubbles, voids, and cavities in mechanical properties.

(4) Radiation Detection and Shielding

You are tasked with determining the intrinsic peak efficiency, ε_{ip} , of a high purity germanium detector (HPGE) at a high gamma-ray energy. You determine that a calibrated reference source of Europium-152, ¹⁵²Eu, can be used. It emits a 1408.013 keV gamma-ray with a branching ratio of 20.87%. In the National Nuclear Data Center Chart of Nuclides, it indicates that the half-life of Eu-152 is 13.517 \pm 0.014 years (one standard deviation). The calibrated reference source lists the activity of your Eu-152 source as 0.984 µCi \pm 3.1% (fractional standard deviation) dated on 5/12/2014. You are counting the reference source today on 10/30/2020. This means the reference source is 6.458 years old as of today. You will need to determine the actual activity of the reference source for today.

The Eu-152 source is placed on a stand 25 cm directly above the center of the germanium detector face. The detector face has a diameter of 8.9 cm. The solid angle Ω (in steradians) subtended by the detector at the source can be determined from the following formula:

$$\Omega = 2\pi \left(1 - \frac{d}{\sqrt{d^2 + a^2}} \right),$$

where d is the distance that the source is from the detector face and a is the radius of the detector face.

- a) (60%) You count the reference source for 5 minutes in a shielded very low background (about zero) and obtain 10,322 counts under the 1408.013 keV photopeak. Calculate the intrinsic peak efficiency of this HPGE detector at the 1408.013 keV energy.
- b) (40%) Using the given uncertainty in the calibrated source activity, the uncertainty in the half-life value of the Eu-152, and the uncertainty in your measured counts, determine the uncertainty in your calculated intrinsic peak efficiency from part (a) above.

(5) Advanced Engineering Mathematics

Define $\mu = \cos \theta$ where θ is the neutron scattering angle from a nucleus with atomic mass number A following elastic scattering. Then, $\overline{\mu}$ is the average cosine of the scattering angle.

The neutron scattering angle can be represented in different reference frames such as the lab frame or the center of mass frame, i.e. θ_L or θ_c . A relationship between the two angles can be derived giving the following expression:

$$\cos\theta_L = \frac{1 + A\cos\theta_C}{\sqrt{A^2 + 2A\cos\theta_C + 1}} \tag{1}$$

One can also derive an equation for $\bar{\mu}$ in terms of the neutron scattering angle in both the lab and center of mass frames resulting in:

$$\bar{\mu} = \frac{1}{2} \int_{0}^{\pi} \sin \theta_{C} \cos \theta_{L} \, d\theta_{C} \tag{2}$$

We note that $\bar{\mu}$ shows up in the approximation for the diffusion coefficient:

$$D = \frac{1}{3\Sigma_S(1-\bar{\mu})}$$

(100%) Solve the integral in equation (2) by substituting equation (1) into the integral to find an expression for $\bar{\mu}$ as a function of A only, i.e. the atomic mass number of the nucleus that the neutron scatters from.

Some Trigonometric Identities

$$\sin 2\theta = 2\sin\theta\cos\theta$$
$$\sin^2\theta + \cos^2\theta = 1$$
$$\sin^2\frac{\theta}{2} = \frac{1-\cos\theta}{2}$$
$$\cos^2\frac{\theta}{2} = \frac{1+\cos\theta}{2}$$