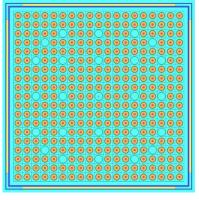

Afternoon Session – RAPID Demonstration

Nathan Roskoff, Valerio Mascolino, and Alireza Haghighat

One-day Workshop on the RAPID Code System for presentation at the Nuclear Regulatory Comission

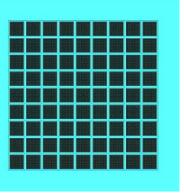
November 9th, 2017

Overview VRS-RAPID web Application



Spent Fuel Pool

I2S-LWR Model


Background: I2S-LWR

- Assembly Size 19x19
- Fuel type U_3Si_2 , enriched to 4.45 wt% ²³⁵U
- Database Range:
 - Burnup: 15340 59169 MWd/MTHM
 - Cooling Time: 0-9 years

I2S-LWR Fuel Assembly

9x9 Segment of SFP

Can be expanded as necessary

Test Case 1

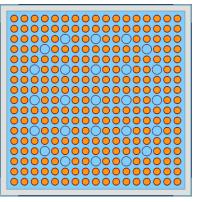
- MODEL: 5x5 Segment of I2S-LWR Spent Fuel Pool
 - Uniform material distribution (all fresh assemblies)
- GOALS:
 - Perform an eigenvalue calculation
 - Analyze outputs (k, fission source)
 - Perform subcritical multiplication calculation
 - Analyze outputs (M, total source)
 - Become familiar with the RAPID's inspection capability

Test Case 2

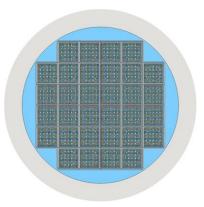
- MODEL: 5x5 Segment of I2S-LWR Spent Fuel Pool
 - Checkerboard Material layout, low/high burnups (15/50 GWd/MTHM)
- GOALS:
 - Perform an eigenvalue calculation
 - Using RAPID's inspection capability, provide detector measurements based on the normalized values
 - Reduce the measured response by a factor 20 for the (5, 5) corner assembly.
 - What should be the burnup of this assembly to match the new detector response?

Test Case 3

- MODEL: 9x9 segment of I2S-LWR Spent Fuel Pool
 - Prebuilt 9x9 burned regions
- GOALS:
 - Perform an eigenvalue calculation
 - Using RAPID's inspection capability, provide a few detector measurements based on the normalized value detector responses
 - Examine the results (measurements vs. predictions)



Spent Fuel Storage Cask


GBC-32 Benchmark Model

Background: GBC-32 Cask

- Assembly Size 17x17
- Fuel type $U0_2$, enriched to 4.5 wt% ²³⁵U
- Database Range:
 - Burnup: 5000 50000 MWd/MTHM
 - Cooling Time: 0 years

GBC-32 Fuel Assembly

Can be expanded as necessary

```
GBC-32 Full Cask
```

Test Case 4a

- MODEL: A fully loaded GBC-32 Cask (*prebuilt*)
 - Uniformly loaded with highly burned fuel (40 GWd/MTHM)
- GOALS:
 - Perform an eigenvalue calculation
 - Analyze outputs (k, fission source)
 - Compare results to Serpent Reference Solution

• Comparison with the Serpent predictions:

Code	# Core	K _{eff}	Time (s)	Diff. (pcm)	Speedup
Serpent	16	0.75113 ± 11 pcm	27,000	-	-
RAPID	1	0.75120	59	9.3	458

Test Case 4b

- Loaded as a checkerboard with, fresh/burned fuel (40 GWd/MTHM)
- GOALS:
 - Perform an eigenvalue calculation
 - Analyze outputs (k, fission source)
 - Compare results to Case 4a
 - Compare results to Serpent Reference Solution

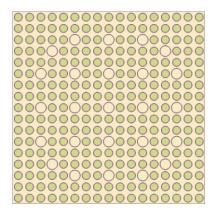
Test Case 4b

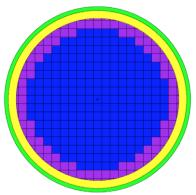
• Comparison with the Serpent predictions:

Code	# Core	K _{eff}	Time (s)	Diff. (pcm)	Speedup
Serpent	16	0.98679±12 pcm	25,200	-	-
RAPID	1	0.98693	54	14.2	467

Reactor Core

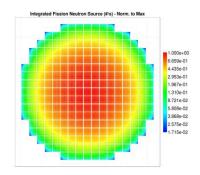
NEA/OECD Monte Carlo Performance Benchmark (Gen-PWR)


Background: Gen-PWR Core


- Assembly Size 17x17
- Fuel type UO₂
- Database Range:
 - Burnup: 0
 - Cooling Time: 0 years
 - Enrichment : 3.0,4.0, and 5.0 wt% ²³⁵U

Gen-PWR Assembly

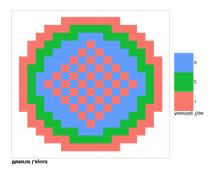
Gen-PWR


Core

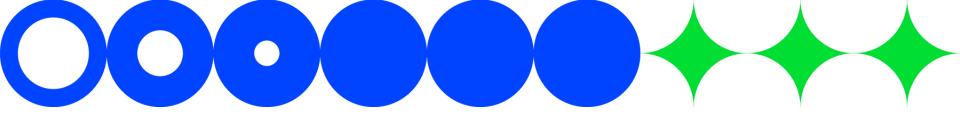
Test Case 5a

- MODEL: A Gen-PWR Core
 - Uniformly loaded with 3.0 wt% ²³⁵U fuel
- GOALS:
 - Perform an eigenvalue calculation (*prebuilt*)
 - Analyze outputs (k, fission source)
 - Copy 2-D fission density
 - Compare with Serpent Reference Calculation

Test Case 5a


• Comparison with the Serpent predictions:


Code	# Core	K _{eff}	Time (s)	Diff. (pcm)	Speedup
Serpent*	32	1.17573±0.0000064	80,940	-	-
RAPID	1	1.17560	503	-11	161


*Note that only pin-wise fission source was tallied in Serpent Reference calculation

Test Case 5b

- MODEL: A Gen-PWR Core
 - Mixed Core Loading
- GOALS:
 - Perform an eigenvalue calculation (*prebuilt, mixed*)
 - Analyze outputs (k, fission source)
 - Copy 2-D fission density
 - Compare results Case 5a

Questions?

Thanks

