
University of Florida

TITAN: A 3‐D Deterministic Radiation
Transport Code

TITAN User Manual Version 1.05

©2009 Ce Yi

VT3G_MBP1
Text Box
Ce Yi & Alireza Haghighat

VT3G_MBP1
Text Box

Contents

TITAN User Manual Version 1.05 ... 1

Chapter 1 - Introduction .. 4

Chapter 2 - Theory .. 6

2.1 Multi-Block Framework Overview ... 6

2.2 Discrete Ordinates Formulations .. 7

2.3 Source Iteration Process .. 8

2.4 Differencing Scheme .. 9

2.5 Characteristics Formulations .. 12

2.6 Block-Oriented Characteristics Solver ... 14

2.6.1 Backward Ray‐Tracing Procedure ... 14

2.6.2 Advantage of Backward Ray‐Tracing .. 16

2.6.3 Ray Tracer ... 17

2.6.4 Interpolation on the Incoming Surface .. 18

2.7 Quadrature Set .. 20

2.7.1 Level‐symmetric Quadrature .. 21

2.7.2 Legendre‐Chebyshev Quadrature .. 23

2.8 Ordinate Splitting .. 24

2.8.1 Rectangular and Pn‐Tn Spliting .. 24

2.8.2 Circular Splitting ... 26

2.9 Projections on the Interface of Coarse Meshes ... 26

2.9.1 Angular Projection .. 27

2.9.2 Spatial Projection .. 30

2.9.3 Projection Matrix .. 31

2.10 Fictitious Quadrature .. 31

2.10.1 Extra Sweep .. 32

2.10.2 Implementation of Fictitious Quadrature .. 33

Chapter 3 - Code Structure ... 36

3.1 Block Structure ... 36

3.2 Processing Block ... 36

3.2.1 First Level Routines: Source Iteration Scheme ... 39

3.2.2 Second Level Routines: Sweeping on Coarse Mesh Level .. 41

3.2.3 Third Level Routines: Sweeping on Fine Mesh Level.. 42

3.3 Data Structure and Initialization Subroutines ... 43

3.4 Coarse and Fine Mesh Interface Flux Handling ... 44

Chapter 4 – I/O Structure .. 47

4.1 Input Structure .. 47

4.1.1 General Parameters .. 47

4.1.2 Geometry Parameters .. 48

4.1.3 Material Distribution .. 49

4.1.4 Source Distribution ... 51

4.1.5 Cross Section Parameter .. 52

4.1.6 Boundary Condition .. 53

4.1.7 SPECT Section ... 54

4.2 Output Files ... 55

4.3 Command Line Options .. 55

APPENDIX A – Scattering Kernel in Linear Boltzmann Equation 57

APPENDIX B - Numerical Quadrature on Unit Sphere Surface 65

LIST OF REFERENCES .. 73

4

Chapter 1 - Introduction

TITAN is a deterministic radiation transport simulation code in 3-D Cartesian geometry.
TITAN numerically solves the time-independent first order transport equation (Linear
Boltzmann Equation) using a hybrid Discrete Ordinate (Sn) and Ray-tracing method (Refs.
1-6).

Two transport solvers, an Sn Solver and a ray-tracing solver, are integrated in the
TITAN code. Both solvers work on the coarse mesh level in Cartesian geometry. Generally,
a TITAN problem model contains more than one coarse mesh. This allows users to apply
different solvers to different coarse mesh. This feature can be useful for problems containing
a large region of low scattering medium. In such regions, the Sn method (Refs. 7-8) requires
finer angular and spatial meshing and becomes less efficient. TITAN’s ray-tracing solver is
more efficient to solve the transport equation in such regions. The ray-tracing solver is
essentially a 3-D Method of Characteristics (Ref. 9-10) solver, only it applies to an individual
coarse mesh, instead of the whole spatial domain. Currently the ray-solver applies only on
coarse mesh with one material region, and the total cross-section of the material should be
close to zero to qualify as ‘low scattering’ medium. For a multi-region regular coarse mesh,
the Sn solver should be used.

TITAN is originally designed to solve radiation transport problems for medical physics
applications, where large air regions are very common. It has been applied on a series of
SPECT (Single Photon Emission Computed Tomography) models to simulate the projection
images (Ref. 2). TITAN can also be used in nuclear engineering application for both
shielding and criticality calculations. It has been benchmarked on a number of OECD/NEA
benchmark problems, including the C5G7 mox (Ref. 1), Kobayahsi (Ref. 6), and the 3-D
parameter space (Ref. 3).

 The code, about 20,000 lines at present, is written in FORTRAN 90/95 with some
language extensions of object-oriented features (part of the FORTRAN 2003 standard).
Object-oriented paradigm is heavily used in the code. Both the Sn solver and the ray-tracing
solver are coarse-mesh-oriented. This allows users to apply an individual solver, quadrature
set, meshing scheme, and etc. to a given coarse mesh. The subroutines in the code are
organized in a kernel-layer structure. The main task for the kernel is to complete a transport
sweep within a coarse mesh, in one direction of a quadrature set, and for one energy group.
Outer layer subroutines complete the tasks, such as system transport sweep and source
iteration loop, by calling the inner layer subroutines.

TITAN is active in development. Some features of the code include:

• Integrated SN and ray-tracing solvers.

• Shared scattering source kernel allowing arbitrary order anisotropic scattering.

5

• Backward ray-tracing.

• Block-oriented data structure allowing localized quadrature sets and solvers.

• Layered code structure.

• Level-symmetric and PN-TN quadrature sets.

• Incorporation of three ordinate splitting techniques (rectangular, local PN-TN, and
circular)

• Fast and memory-efficient spatial and angular projections on the interfaces of coarse
meshes by using sparse projection matrix.

• ‘Frontline-style’ interface flux handling.

• An efficient algorithm for calculation of the scattering source and the within-group
scattering with a modified scattering kernel.

• A binary I/O library to visualize and post-process data with TECPLOT.

• Extra Sweep technique with the fictitious quadrature technique for calculations of
angular fluxes along arbitrary directions.

A parallel version using MPI is also available. Currently the parallel version only does
angular decomposition. It uses the same input deck as the serial version. The number of cpu
is specified in the ‘mpirun’ command line. TITAN will distribute the ‘angular sweep’ tasks
evenly to the allocated processors.

6

Chapter 2 - Theory

2.1 Multi-Block Framework Overview
To numerically solve the LBE with a deterministic method, discretization schemes are

required in the energy, angular and spatial domains. Once the discretization grid is built in
the phase space, one can evaluate the angular flux on each node by sweeping the grid in a
specific order repeatedly via an iteration scheme (e.g., the source iteration scheme) until
solution convergence is achieved.

The hybrid method is built on a multi-block spatial meshing scheme, which is also
used in the PENTRAN code (Ref. 11). The meshing scheme divides the whole problem
model into coarse meshes (blocks) in the Cartesian geometry. And each coarse mesh is
further filled with uniform fine meshes or characteristic rays depending on which solver is
assigned to the coarse mesh. Figure 2-1 shows the multi-block framework of the hybrid
approach.

Figure 2-1. Coarse mesh/fine mesh meshing scheme.

The multi-block framework leads to an important feature of the hybrid code: both the
SN and characteristics solvers are coarse-mesh-oriented. They are designed to solve the
transport equation on the scope of a coarse mesh. A coarse mesh can be considered as a
relatively independent coding unit with its own spatial discretization grid (fine meshes or
characteristic rays) and angular discretization grid (quadrature set). Users can assign either
solver to each coarse mesh.

In the following sections, we provide the formulations for the block-oriented SN and
characteristics solvers, and demonstrate the two solvers on the multi-block framework. We

7

also discuss the angular quadrature sets used in the TITAN code along with the ordinate
splitting technique.

2.2 Discrete Ordinates Formulations
Here, we apply the multigroup theory (Ref. 7) to discretize the LBE in the energy

domain.

, ' , ',
' 1 0 1

 ', ',

 ' ',

() (, , , ,) (, ,) (, , , ,)

()!(2 1) (, ,){ () (, ,) 2 ()
()!

[(, ,) cos() (, ,) sin()]}

(, ,)

g g g

G L l
k

s g g l l g l l
g l k

k k
C g l S g l

g
f g g

o

x y z x y z x y z
x y z

l kl x y z P x y z P
l k

x y z k x y z k

x y z
k

μ η ξ ψ μ ϕ σ ψ μ ϕ

σ μ φ μ

φ ϕ φ ϕ

χ
νσ φ

→
= = =

∂ ∂ ∂
+ + + =

∂ ∂ ∂

−
+ + ⋅

+

+ +

∑∑ ∑

fix
0 g

' 1

(, ,) or S (, , , ,)
G

g

x y z x y z μ ϕ
=
∑

 (2-1)

Where, μ ,η ,and ξ are the x, y and z direction cosines for the discrete ordinates, θ ,ϕ are the
polar and azimuthal angles, respectively. (μ ,ϕ) or (μ ,η ,ξ) specifies a discrete ordinate,

where cos(), =sin()cos(), sin()sin()μ θ η θ ϕ ξ θ ϕ= = .)(μlP is the thl Legendre polynomial (for l

=1, L where L is Legendre expansion order). And)(μk
lP is the thl , thk associated Legendre

polynomial, (, , , ,)g x y zψ μ ϕ is the group g angular flux (for g=1, G , where G is the number

of groups) at the position of (, ,)x y z and in the direction of (,)μ ϕ . lg ,'φ is the thl Legendre

scalar flux moment for group 'g . ', (, ,)k
C g l x y zφ is thl , thk cosine associated Legendre scalar

flux moment for group 'g , and ', (, ,)k
S g l x y zφ is thl , thk sine associated Legendre scalar flux

moment for group 'g at the position of (, ,)x y z . These flux moments are defined as:

∫ ∫−
=

1

1

2

0 ',')',',,,(
2

')'(
2

'),,(
π

ϕμψ
π
ϕμμφ zyxdPdzyx gllg (2-2)

∫ ∫−
=

1

1

2

0 ',')',',,,()'cos(
2

')'(
2

'),,(
π

ϕμψϕ
π
ϕμμφ zyxkdPdzyx g

k
llg

k
C (2-3)

∫ ∫−
=

1

1

2

0 ',')',',,,()'sin(
2

')'(
2

'),,(
π

ϕμψϕ
π
ϕμμφ zyxkdPdzyx g

k
llg

k
S (2-4)

And other variables are:

gσ : total group macroscopic cross section

gsg →'σ : thl moment of the macroscopic differential scattering cross section from gg →' .

gχ : group fission spectrum
k0: criticality eigenvalue

8

fgυσ : group fission production

),,,,(ϕμzyxS fix
g : external source on the position of (x,y,z) and in the direction of),(ϕμ

We can make several observations on Eq. 2-1. First, obviously it accomplishes the
discretization in the energy domain by utilizing the multigroup theory. As a result,

)ˆ,,(ΩErrψ becomes (, , , ,)g x y zψ μ ϕ . Secondly in the angular domain, no further

discretization is required, since we solve for the angular flux in a number of discrete
directions of (,) 1,n n n Nμ ϕ = , where N is the total number of directions. The discrete
directions are carefully chosen by the quadrature set so that we can conserve the integral
quantities such as scalar fluxes. Thirdly, the most challenging term is the scattering term, in
which we convert the integrations over energy and angular domain into numerical
summations for energy groups and Legendre expansion terms. Derivations of the scattering
kernel are given in Appendix A. It is important to note that in Eq. 2-1, the scattering kernel,
as well as the fission term, does not explicitly depend on the angular flux, but on the flux
moments. The relationships between the angular flux and the flux moments are defined by
Eqs. 2-2 to 2-4. Finally the streaming term becomes a differential term in Cartesian
geometry. In order to numerically evaluate the differentials, differencing scheme is required
in the SN method.

2.3 Source Iteration Process
Since the terms on the right hand side of Eq. 2-1, including scattering term, fission

term and fix-source term, are not explicitly dependent on the angular flux, we can further
simplify Eq. 2-1 by combining all the source terms into one source term.

() (, , , ,) (, ,) (, , , ,) (, , , ,)g g g gx y z x y z x y z Q x y z
x y z

μ η ξ ψ μ ϕ σ ψ μ ϕ μ ϕ∂ ∂ ∂
+ + + =

∂ ∂ ∂
 (2-5)

where or g scattering fission fixQ S S S= + . scatteringS , fissionS and fixS represent the three terms on the

right hand side of Eq. 2-1 respectively. Eq. 2-5 can be viewed as a numerical iteration
equation, which usually is called ‘source iteration’ scheme (SI).2 In this iteration process, gQ

is calculated from previous iteration results. Therefore, we can solve Eq. 2-5 for the angular
flux by taking gQ as a constant. Flux moments can be evaluated by Eqs. 2-2 to 2-4 with the

latest angular flux, then we can use the flux moments to update gQ for the next iteration.

This process is repeated until the 0’th flux moment is converged under some convergence
criterion. The iteration process for each group (g) can be illustrated as follows:

Step 1: Solve Eq. 2-5 for angular flux (, , , ,)g x y zψ μ ϕ .

Step 2: Evaluate flux moments based on Eqs. 2-2 to 2-4.

Step 3: Update the scattering source.

9

Step 4: Repeat the process from Step 1, until
() (1)

(1)max(| |)
i i

g g
i

g

tolerence
φ φ
φ

−

−

−
≤ .

In Step 1, gψ is calculated for every fine mesh along a given direction, which is

referred to as ‘one direction sweep’. After sweeps for every direction are completed, flux
moments can be updated in Step 2. The group iteration (g=1, G) needs to repeat only once
for fixed source problems with only down-scattering, because the scattering source for the
current group only depends on the converged upper group flux moments. The summation

over groups in the scattering term can be reduced to
1

' 1

g

g

−

=
∑ instead of

' 1

G

g =
∑ , However, for

problems with up-scattering, an outer iteration is required since the scattering source is
coupled with lower energy groups. For eigenvalue problems, another outer loop is necessary
so that the fission source and k-effective can be updated in between two successive outer
iterations.

2.4 Differencing Scheme
From Eq. 2-1 to Eq. 2-5, we are finally one step away to numerically solving the LBE,

which is the evaluation of the differencing (streaming) term in Eq. 2-5 by various
differencing schemes. As shown in Figures 2-2, Eq. 2-5 applies on a spatial domain of a fine
mesh with the sizes of , and zx yΔ Δ Δ on three axes.

y out

Δ

Δ

Δ

x

y

z
ψ

ψ

ψ

ψ
ψ

ψ

ψ
y in

z out
t

z in

A
x in

x out

Figure 2-2. Differencing scheme on one fine mesh.

Here, we solve for the average flux on the fine mesh.

() 1 (, , , ,)n
gijk g n n

ijk x y z

dx dy dz x y z u
V

ψ ψ ϕ
Δ Δ Δ

= ∫ ∫ ∫ (2-6)

10

Where i, j, k are the fine mesh indices, g is the group index, and n is the direction index.
ijkV x y z= Δ Δ Δ is the volume of the fine mesh. Now, we can finally complete the

discretizations on all three domains in the phase space. To calculate ()n
gijkψ , we integrate Eq. 2-

5 over the fine mesh volume ijkV .

() ()

0 0

() ()

0 0

() ()

0 0

() ()

0 0 0 0 0 0

(, ,) (0, ,)

(, ,) (,0,)

(, ,) (, ,0)

(, ,) (, ,)

y z n n
n g g

x z n n
n g g

x y n n
n g g

x y z x y zn n
ijk g g

dy dz x y z y z

dx dz x y z x z

dx dy x y z x y

dx dy dz x y z dx dy dzQ x y z

μ ψ ψ

η ψ ψ

ξ ψ ψ

σ ψ

Δ Δ

Δ Δ

Δ Δ

Δ Δ Δ Δ Δ Δ

⎡ ⎤Δ −⎣ ⎦

⎡ ⎤+ Δ −⎣ ⎦

⎡ ⎤+ Δ −⎣ ⎦

+ =

∫ ∫
∫ ∫
∫ ∫
∫ ∫ ∫ ∫ ∫ ∫

 (2-7)

We assume cross sections are constant inside the fine mesh. In a similar way as Eq. 2-
6, we define the fluxes on the three incoming boundaries and the three outgoing boundaries
as:

()
 in

()
 out

()
y in

()
y out

()
z in

()
z out

1 (0, ,)

1 (, ,)

1 (,0,)

1 (, ,)

1 (, ,0)

1 (,

n
x g

y z

n
x g

y z

n
g

x z

n
g

x z

n
g

x y

n
g

x y

dy dz y z
y z

dy dz x y z
y z

dx dz x z
x z

dx dz x y z
x z

dx dy x y
x y

dx dy x y
x y

ψ ψ

ψ ψ

ψ ψ

ψ ψ

ψ ψ

ψ ψ

Δ Δ

Δ Δ

Δ Δ

Δ Δ

Δ Δ

Δ Δ

=
Δ Δ

= Δ
Δ Δ

=
Δ Δ

= Δ
Δ Δ

=
Δ Δ

=
Δ Δ

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫ ,)zΔ

 (2-8)

And the angular source for the fine mesh can be defined as:

() 1 (, , , ,)n
gijk g n n

ijk x y z

Q dx dy dzQ x y z u
V

ϕ
Δ Δ Δ

= ∫ ∫ ∫ (2-9)

We can divide both sides of Eq. 2-7 by ijkV , then substitute Eqs. 2-6, 2-8 and 2-9 into Eq. 2-7,

and obtain Eq. 2-10.

() ()
 out in y out y in out z in() () () n nn n n

x x z ijk gijk gijkQ
x y z

μ η ξψ ψ ψ ψ ψ ψ σ ψ− + − + − + =
Δ Δ Δ

 (2-10)

11

In Eq. 2-10, the three incoming fluxes (in y in z in, and xψ ψ ψ) can be obtained from the fine-

mesh boundary conditions at the three incoming surfaces. Therefore, to calculate ()n
gijkψ and

the three outgoing fluxes, we need three additional equations, which are provided by the
differencing scheme. One of the simplest schemes is the linear diamond (LD) differencing
(Ref. 7) expressed by:

()
x o u t x in

()
y o u t y in

()
z o u t z in

2

2

2

n
g ijk

n
g ijk

n
g i jk

ψ ψ ψ

ψ ψ ψ

ψ ψ ψ

= −

= −

= −

 (2-11)

When moving in positive directions (as shown in Figure 2-2), we may eliminate the
outgoing fluxes in Eq. 2-10 by using Eq. 2-11 to obtain Eq. 2-12.

()
 in y in z in

()

2 2 2

2 2 2

nn n n
x gijk

n
gijk

n n n
ijk

Q
x y z

x y z

μ η ξψ ψ ψ
ψ μ η ξσ

+ + +
Δ Δ Δ=

+ + +
Δ Δ Δ

 (2-12)

The original LBE (Eq. 2-1) reduces to a set of linear equations of Eqs. 2-11 and 2-12.
Note that the incoming surfaces change for different directions. The fine mesh sweeping
order is decided by the octant number of the direction. The same principle is also applied to
coarse meshes: we always try to calculate the outgoing fluxes by solving the LBE based on
the incoming fluxes. In this sweeping process, the outgoing fluxes will be the incoming flux
for the next adjacent fine/coarse mesh along the direction. If the incoming or outgoing
boundaries of the fine/coarse mesh are aligned with the model boundaries, model boundary
conditions are applied. However, for the coarse mesh sweep, flux projections are required on
the interface of two adjacent coarse meshes if the two coarse meshes use different spatial and
angular discrtetization grids. The projection techniques are discussed in Section 2.9.

In Eq. 2-12, the terms of n

x
μ
Δ

, n

y
η
Δ

 and n

z
ξ
Δ

are always positive, since we always sweep

fine meshes along the direction defined by the direction cosines (, ,)n n nμ η ξ , i.e., nμ and xΔ ,

either both are positive, or both are negative. The incoming fluxes, ()n
gijkQ and ijkσ are positive

with their physical meaning. As a result, ()n
gijkψ is always positive. However, the outgoing

fluxes calculated by Eq. 2-11 of the linear diamond differencing scheme could be negative,
which conflicts with its physical meaning. In order to avoid negative fluxes, flux zero fix-up
is usually applied in the diamond differencing scheme. Furthermore, the diamond
differencing scheme introduces artificial oscillations in certain conditions (Ref. 12). For this
reason, and to facilitate increasing accuracy with adaptive differencing, more advanced
differencing schemes (Refs. 13-14), such as DTW (Ref. 15), EDW (Ref. 16), and EDI (Ref.

12

17) are implemented in the PENTRAN code. Currently, the diamond and DTW differencing
schemes are applied in the TITAN code.

2.5 Characteristics Formulations
Now we further discuss the formulations for the MOC used in the TITAN code. MOC

solves the transport equation for the angular flux along characteristic rays with region-wise
discretization grid (i.e. coarse mesh) in the spatial domain. Since a region can be any shape,
MOC has the ability to treat the geometry of a model exactly. Similar to the coarse/fine mesh
sweep process in the SN method, in the MOC, we still calculate the outgoing flux based on
the incoming flux for each region, and the outgoing flux will be the incoming flux for the
next adjacent region. In the angular domain, we perform this sweeping process for a number
of directions chosen by a quadrature set. Within one region, we assume constant cross
sections and calculate the average flux for the region by filling the region with characteristic
rays along the directions in a quadrature set. Figure 2-3 shows the parallel characteristic rays
along direction n in a square region i.

Figure 2-3. Schematic of characteristic rays in a coarse mesh using the characteristics

method.

For a given ray of k with a path length of inks , we solve the transport equation for

() 0g ink in kl l sψ ≤ ≤ , which is the angular flux for group g , along direction n, at position l

along ray k in region i. We denote)0(gink
in
gink ψψ = and)(inkgink

out
gink sψψ = . The transport

equation along ray k can be written as:

ginginkgiginkn Qll =+∇⋅Ω)()(ˆ ψσψ (2-13)

Sink

Region iin
ginkψ

n̂

Incoming
Boundary

Outgoing Boundary

out
ginkψ

Non fine mesh centers on the incoming boundary
Fine mesh centers on the outgoing boundary

13

Where or gin scattering fission fixQ S S S= + is the total angular source in region i along direction n

for group g. We assume a constant angular source for each ray in region i along direction n.
The streaming term in Eq. 2-13 can be viewed as flux gradient’s projection along direction n,
which is the directional derivative of the angular flux. Therefore, Eq. 2-13 can be rewritten as:

ginginkgi
gink Ql
dl

ld
=+)(

)(
ψσ

ψ
 (2-14)

Where, l is the path length. Eq. 2-14 can be solved analytically if we know the incoming flux
(0)in

gink ginkψ ψ= as a boundary condition.

)1()(l

gi

ginlin
ginkgink

gigi e
Q

el σσ

σ
ψψ −− −+= (2-15)

The outgoing flux can be calculated as follows.

() (1)g i in k g i in ks sg ino u t in
g in k g in k in k g in k

g i

Q
s e eσ σψ ψ ψ

σ
− −= = + − (2-16)

In order to calculate the average angular flux in region i, first we use Eqs. 2-15 and 2-
16 to evaluate the average angular flux for each parallel ray along direction n, which is given
by:

()

giink

gink

gi

gin

giink

out
gink

in
gink

gi

gin

l

gi

ginlin
gink

s

ink
gink

s

ink
gink

s
Q

s
Q

e
Q

edl
s

ldl
s

gigiinkink

σσσ
ψψ

σ

σ
ψψψ σσ

Δ
+=

−
+=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+== −−∫∫ 11)(1

0

0

 (2-17)

Where out
gink

in
ginkgink ψψ −=Δ . Then, we evaluate the average angular flux for region i by

summation of average angular fluxes for all the parallel rays along direction n, with a
weighting factor of inkinkink sAV δδ = , where inkAδ is the width (in 2-D) or the cross sectional
area (in 3-D) which ray (i,n,k) represents. The average angular flux along direction n is
expressed by:

()

()

()

()

()

()∑
∑

∑

∑

∑
∑ Δ

+=
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ Δ
+⋅

=
⋅

=

k
inkinkgi

k
inkink

gi

gin

k
inkink

k giink

gink

gi

gin
inkink

k
inkink

k
inkinkgin

gin sA

AQ
sA

s
Q

sA

sA

sA

δσ

δ

σδ
σσ

δ

δ

δψ
ψ (2-18)

14

Note that the volume (in 3-D) or the area (2-D) for region i can be represented as

∑∑ =≈
k

inkink
k

inki sAVV δδ , if inkAδ is small enough. Since inkAδ represents the distance

between two adjacent parallel rays, denser rays are required to cover region i as inkAδ
decreases. Therefore, in order to get an accurate region-averaged angular flux with Eq. 2-18,
two conditions are necessary:

• Region i is small, or flux changes slowly over the region.

• Rays are dense enough to cover the region.

Note that similar conditions are required in the SN method in the sense of spatial
domain discretization approach. Generally, in the SN method finer meshes are required to get
a more accurate flux distribution.

The source iteration scheme can be applied to the MOC similarly as in the SN method.
Eqs. 2-16 and 2-18, as Eqs. 2-11 and 2-12 in the SN method, are the fundamental equations
for Step 1 (the ‘sweep’ process) in the source iteration scheme, except that the fine-mesh-
averaged angular flux in the SN method becomes region-averaged angular flux in the MOC.

2.6 Block-Oriented Characteristics Solver
The block-oriented characteristics solver is different from the general MOC approach,

in the sense that we only apply the solver on an individual block within the multi-block
framework. For a characteristics coarse mesh, we build uniform fine meshing on the
boundaries, and draw the characteristic rays from the fine mesh centers along quadrature
directions. We consider the characteristics coarse mesh as one region. And the coarse mesh
space is covered with characteristic rays. The boundary fluxes with uniform fine meshing
grid are used to communicate with adjacent blocks, since coarse meshes are coupled on their
interfaces in the sweep process.

2.6.1 Backward Ray­Tracing Procedure

 Figure 2-4 shows a typical coarse mesh with 5 5× fine meshes on the 6 surfaces. Note
that fine meshing is only applied on the surfaces of a coarse mesh to which the characteristics
solver is assigned. The same coarse-mesh volume could be divided into 5 5 5× × fine meshes
if the SN solver is assigned.

15

Figure 2-4. A coarse mesh with characteristics solver assigned.

Now we can demonstrate how we set up rays in a coarse mesh shown in Figure 2-4. In
the ‘sweep’ process, our goal is to calculate the outgoing flux based on the incoming flux. In
Figure 2-4, the front surface becomes one of the three outgoing surfaces for the directions in
four of eight octants in a quadrature set. For the other four octants, it becomes one of the
three incoming surfaces. For demonstration purposes, we assume the front surface in Figure
2-4 is one of the outgoing surfaces. Now we need to calculate the outgoing angular flux for
each fine mesh on the surface for each direction in the four octants. Figure 2-5 shows the
characteristic rays associated with the center fine mesh on the front surface.

16

Figure 2-5. Characteristic rays for one fine mesh on one outgoing surface.

As shown in Figure 2-5, we draw 12 rays backward from the center of one fine mesh (located
on the front surface) to the incoming surfaces across the coarse mesh. The four different
color rays in Figure 2-5 represent the directions in four octants. Since the intersection
positions are not necessarily at the centers of fine meshes on the incoming boundary, an
interpolation scheme is required to calculate the incoming fluxes at the intersection positions
based on the known incoming fluxes at the fine-mesh centers. Here, we consider an S4
quadrature set which provides three directions per octant. For directions in 4 of the 8 octants,
the front surface is one of the three outgoing surfaces. Therefore, 12 rays for each fine mesh
on the front surfaces are required. The overall characteristic ray density to cover the coarse
mesh depends on both the fine mesh grid densities on the outgoing boundaries and the
number of directions in the quadrature set. Figure 2-3 also illustrates the characteristic ray
drawing procedure in 2-D. The green dots on the outgoing boundary in Figure 2-3 are located
on the centers of the fine meshes. While the red dots, which represent the intersection points
on the incoming boundary, are off-centered.

2.6.2 Advantage of Backward Ray­Tracing

In the characteristic ray drawing procedure, we could choose a ‘forward’ approach:
drawing the characteristic rays from the fine mesh centers on the incoming boundary to the
outgoing boundary. The outgoing boundary will experience rays intersecting its fine meshes
in a scattered manner. After the outgoing angular fluxes are calculated, an interpolation
procedure is required to project the scattered outgoing flux onto the fine mesh centers.

17

In a ray drawing procedure, we can always choose a fine mesh center, either on the
incoming boundary or on the outgoing boundary, as one node of each characteristic ray to
avoid interpolations on that boundary. The other node of the ray will be scattered onto the
other boundary, on which interpolations are required regardless since we are interested in the
fluxes only on the centers of the fine mesh grid. An interpolation procedure on the incoming
boundary needs to evaluate the angular flux at the incoming node of each characteristic ray
based on the known incoming fluxes at the structured fine mesh centers. On the other hand,
an interpolation procedure on the outgoing boundary needs to evaluate the outgoing flux at
the center of each fine mesh based on the calculated fluxes at the scattered outgoing nodes of
the rays. The difference between the two choices is: on the incoming boundary, the
interpolation procedure is carried on from structured data points (incoming fluxes on the fine
mesh centers) to scattered data points (incoming fluxes for the rays), while on the outgoing
boundary, the procedure is carried on from scattered data points (outgoing fluxes from the
rays) to structured data points (outgoing fluxes on the fine mesh centers).

In the block-oriented characteristics approach, we choose to fix the interpolations on
the incoming boundary, because it is numerically more accurate and efficient to interpolate
scattered points from structured points than the other way around. For interpolations on the
outgoing boundary, the scattered outgoing nodes of the rays are the known base points. These
scattered points could be too few, or too badly non-uniformly scattered on the boundary, to
complete a relatively accurate interpolation to evaluate the flux on the center of every fine
mesh. For interpolations on the incoming boundary, the structured, uniformly distributed fine
mesh center fluxes are the known data points. Four closest fine mesh centers to any scattered
point can always be found to complete a bi-liner interpolation. Clearly an interpolation
procedure on the incoming boundary is a better choice. The backward ray-tracing facilitates
the integration of the block-oriented solvers.

2.6.3 Ray Tracer

In order to calculate the outgoing flux by using Eq. 2-16, we need to evaluate the
incoming flux, which is located on the other end of the rays on the incoming surfaces. The
incoming flux is known from the boundary conditions if the incoming surface is part of the
model boundaries, or from the outgoing flux for the adjacent coarse mesh in the coarse mesh
sweep process. We assume these fine-mesh-averaged incoming angular fluxes are located on
the center of each fine mesh on the incoming surface. However, the intersection point on the
incoming surface is not necessarily on the center of a fine mesh. Therefore, we need to
determine the intersection position of the ray with the incoming surface, and to evaluate the
flux at the intersection point by some interpolation method from the fine-mesh-centered
incoming flux array.

In a MOC code, a ray tracer subroutine is required to calculate the intersection point of
a ray with a surface. The coordinates of the points along a ray can be defined as:

18

0

0

0

x x t
y y t
z z t

μ
η
ξ

= + ⋅
= + ⋅
= + ⋅

 (2-19)

Where 0 0 0(, ,)x y z is the starting point of the ray, t is path length along the ray, and (, ,)μ η ξ
are the direction cosines. We can substitute Eq. 2-19 into a region boundary surface function
to evaluate the coordinates of the intersection points of the ray with that surface and the path
length t (i.e., inks in Eqs. 2-16 and 2-18). In the MOC, it can be very expensive, in terms of
computer memory, to store the geometry information if the number of rays and the number of
regions are very large. For this reason, 3-D MOC could be prohibitive for a large model. The
block-oriented characteristics solver considers the whole coarse mesh as one region.
Therefore, for Eq. 2-19, the region boundaries become the coarse mesh surfaces. Because the
characteristics solver is designed for solving the transport equation in a low scattering
medium, across which we can expect that the angular flux along the ray does not change
significantly, it is possible to use a relatively large region (i.e. a coarse mesh) for a flat-
source MOC formulation.

2.6.4 Interpolation on the Incoming Surface

Based on the positions of the intersection points of rays on the incoming surface of a
coarse mesh, we can further evaluate the averaged flux for each fine mesh by interpolation.
As shown in Figure 2-6, points A, B, C, and D denote the closest 4 neighbors to point P,
which is the intersection point of a characteristic ray across one incoming boundary. We need
to evaluate the angular flux at point P based on the fluxes at the 4 neighboring points.

Figure 2-6. Bilinear interpolation for the incoming flux.

For simplification, we assume the coordinates for the 4 neighbors and point P are A(-
1,-1), B(1, -1), C(1, 1), D(-1, 1) and P(s, t), where s, t are evaluated by the ray tracer. Note

A• • B

• C (1, 1)
(-1,1)

D•

oP(s,t)

19

that the actual positions of the fine mesh centers and point P are projected into the
coordinates shown in Figure 2-6, in which A, B, C, D and P are located at (-1,-1), (1,-1), (1,1),
(-1,1) and (s, t) for the interpolation. Two interpolation techniques are applied in the TITAN
code. Either of them can be used to estimate the incoming flux at point P.

• closest neighbor.

Pψ is equal to the angular flux at the closest neighbor. For example, in Figure 2-6 Pψ
will be equal to the Aψ under the closest neighbor approach.

• bilinear interpolation.

A bilinear interpolation formulation is applied:

(1)(1) (1)(1)(,) (1, 1) (1, 1)
4 4

(1)(1) (1)(1) (1, 1) (1, 1)
4 4

s t s ts t

s t s t

ψ ψ ψ

ψ ψ

− − − +
= − − + − +

+ − + +
+ + − + + +

 (2-20)

Where (1, 1) Aψ ψ− − = , (1, 1) Bψ ψ− = , (1, 1) Cψ ψ+ + = , (1, 1) Bψ ψ− + = , and (,) Ps tψ ψ= . The
truncation error indicates the bilinear approach is a second order interpolation. And it should
be more accurate than the first approach, which is a first order interpolation. However, we
should note that these point-wise angular fluxes are actually averaged values: fine-mesh-
centered fluxes (Aψ , Bψ , Cψ , and Dψ) are the averaged fluxes on the fine meshes, and the

ray intersection-point flux (Pψ) is the averaged flux on the cross sectional area (inkAδ in Eq.
2-18) of the volume the ray represents. An assumption is made that the averaged flux
happens at the center of the fine mesh, or at point P of the ray cross section area. This
assumption is reasonable if the fine mesh is small. Therefore, our ray solver may require a
relatively finer meshing on the coarse mesh surfaces, which leads to denser rays in the coarse
mesh and longer computer time and memory requirements. On the other hand, if the fine
mesh is relatively large, the closest neighbor interpolation scheme is not necessarily less
accurate than the advanced bilinear interpolation. The most suitable interpolation scheme
could depend on the problem and its modeling. By default, the bilinear interpolation scheme
is used in the TITAN code.

In the characteristics solver, the cross sectional area represented by each ray (defined
in Eq. 2-18) can by calculated by the following formulation:

)cos(,, θδ ×= jiji SA (2-21)

Where Si,j is the fine mesh area on the outgoing boundary, and θ is the angle between the ray
direction and the direction normal to the boundary. Even with a uniform fine meshing
applied on the surfaces of a coarse mesh for the characteristics solver, rays are not

20

necessarily distributed uniformly within the coarse mesh volume, because rays along a
certain direction can form different angles with the normal directions of the three incoming
surfaces of the coarse mesh. Non-uniform ray distribution could lead to the requirement of
denser rays and/or smaller coarse meshes to maintain accuracy of the bi-linear interpolation.

2.7 Quadrature Set
We discussed the formulations for the SN and characteristics solver, respectively. Our

focus has been on the Step 1 of the source iteration scheme, which is to solve the transport
equation for the angular flux. For Steps 2 and 3, the formulations are fundamentally the same
for both solvers because of the following similarities between two methods:

• Calculate the angular flux, although with different formulations.

• Apply the same energy and angular domain discretization approaches.

• Use the source iteration scheme.

The major difference between the two methods is the discretization method in spatial
domain. Both block-oriented solvers share the same goal to calculate the outgoing angular
fluxes for a block. However, they complete the task with different formulations of the
original LBE. Now we can further demonstrate Step 3 of the source iteration scheme. In both
methods, we denote the source term in Eq. 2-5 or Eq. 2-15 by:

 or scattering fission fixQ S S S= + (2-22)

For simplification, we omit the index for energy group, direction, and fine mesh (SN) or
region (MOC). In Eq. 2-22, fixS is known as external source. scatteringS and fissionS can be

evaluated from flux moments calculated from the results of the previous iteration.

() (1)
, ' , , ', ,

' 1 0 1

,(1) ,(1)
 ', , ',

()!(2 1) { () 2 ()
()!

 [cos() sin()]}

G L l
i i k

scattering s g g l x l n g l x l n
g l k

k i k i
C g l x n S g l n

l kS l P P
l k

k k

σ μ φ μ

φ ϕ φ ϕ

−
→

= = =

− −

−
= + + ⋅

+

+

∑∑ ∑
 (2-23)

Where i is the iteration index, g is the energy group index, l and k are the Legendre
expansion indices, (,)n nμ ϕ specifies direction n in the quadrature set,

(1) ,(1) ,(1)
', , ', , ', , , and i k i k i

g l x C g l x S g lφ φ φ− − − are the flux moments calculated from the last iteration, which is

indexed by i-1 here, and x is the fine mesh index in the SN formulation, or the region index in
the MOC formulation.

The scattering kernel defined by Eq. 2-23 can be expanded to an arbitrary Legendre order if
the same order of cross section data is provided. The isotropic fission source and the k-
effective can be evaluated by Eqs. 2-24 and 2-25 from an outer iteration.

21

() (1)
 ', ',0,(1)

' 1

G
gj j

fission f g x g xi
g

S
k
χ

νσ φ −
−

=

= ∑ (2-24)

><

><
⋅= −

−
)1(

)(
)1()(

j
fission

j
fissionjj

Q
Q

kk (2-25)

Where <> denotes the integration over the entire phase space. Note that j is the outer iteration
index, while in Eq. 2-23 i is the inner iteration index. Scattering source is updated after one
sweep is completed for each group, while the fission source is updated only after all groups
are converged based on the previous fission source.

Equations 2-23 and 2-24 are the formulations for Step 3 in the source iteration scheme. For
Step 2, we use a quadrature set to evaluate the integral over angular domain defined in Eqs.
2-2 to 2-4 for flux moments.

∑

∑

∑

=

=

=

=

=

=

N

n
nn

k
lnn

k
lS

N

n
nn

k
lnn

k
lC

N

n
nlnnl

kPw

kPw

Pw

1
,

1
,

1

)sin()(
8
1

)cos()(
8
1

)(
8
1

ϕμψφ

ϕμψφ

μψφ

 (2-26)

Here, for simplification, we drop the indices for energy group and fine mesh or region.
Direction n can be specified by (,) where 1 1 , 0 2n n n nμ ϕ μ ϕ π− ≤ ≤ ≤ < , or

2 2 2(, ,) where 1 , , 1 , 1n n n n n n n n nμ η ξ μ η ξ μ η ξ− ≤ ≤ + + = . In order to preserve symmetries, a

quadrature set only specifies directions in the first octant (0 , , 1n n nμ η ξ≤ ≤), directions in the

other octants can by acquired by changing the signs of nμ , nη , and/or nξ . For example,

(, ,)n n nμ η ξ− − − specifies the opposite direction corresponding to direction (, ,)n n nμ η ξ in

another octant. Direction (, ,)n n nμ η ξ and all its seven corresponding directions in other

octants have the same weight (nw). Usually, we keep the total weight for all directions in one

octant equal to one. These directions and the associated weights (nw) are carefully chosen by
a quadrature set, so that we can accurately evaluate the moments of direction cosines and the
flux moments defined by Eq. 2-26. Other concerns related to the physics of the problems can
affect the choice of the directions too. Further discussions are given in Appendix B.
Currently, in the TITAN code, we have two types of quadrature sets available: the level-
symmetric quadrature (Ref. 6) and the Legendre-Chebyshev quadrature (Ref. 19)

2.7.1 Level­symmetric Quadrature

Figure 2-7 shows a level-symmetric quadrature with an order of 10 (S10). We use a
point on the unit sphere to represent a direction. The xyz coordinates of the point are the three

22

direction cosines of the direction. These directions are ordered with a ‘triangle shape’
formation. To generate a quadrature set, we need to find the direction cosines and the weights
for all the directions.

Figure 2-7. Schematic of the S10 level-symmetric quadrature set in one octant.

S10 specifies 15 directions in the first octant on 5 levels. Directions in the other seven
octants are chosen to be symmetric to the directions in the first octant. Therefore, the total
number of directions on the unit sphere is 15 8 120× = for all 8 octants. Generally, for a level-
symmetric quadrature with an order of N, we can calculate the number of levels L, and total
number of directions M in the first octant by:

8
2)(NNM ,

2
+×

==
NL (2-27)

To keep a symmetric layout of the directions, N is always chosen from even numbers.
The level-symmetric quadrature set is widely used in the SN codes for its rotation invariance
property and preservation of moments. Rotation invariance keeps the quadrature directions
unchanged after 90 degree rotation along any axis. In other words, if (, ,)n n nμ η ξ is one

direction in the first octant of the quadrature set, any combinations of nμ , nη , and nξ , such

as (, ,)n n nμ ξ η or (, ,)n n nξ η μ , are also defined in the first octant of the quadrature set. Note
that rotation invariance is different from octant symmetry of the directions, where

),,(nnn ηξμ ±±± defines the eight symmetric directions in the eight octants. Rotation
invariance is very desirable in many real problems to keep the symmetry, especially when
reflective boundary conditions are applied. However, it also places a strict constraint on the
choice of the quadrature directions. The symmetry condition requires kji ξημ , , for

2
,,1 Nkji ≤≤ following the same sequence.

23

2
)31(2

)1(

2/,,2 ,1,,for

2
1

2
1

−
−

=

−+=

===

N
C

iC

Nkji

i

kji

μ

μμ

ξημ L

 (2-28)

In Eq. 2-28, only 1μ is free of choice. The remaining degrees of freedom on direction
weights are used to conserve the odd and even moments of μ , η , and ξ .10

1

1 1 1

1 1 1

1.0

0 for n odd

1 for n even ,
1

M

m
m
M M M

n n n
m m m m m m

m m m
M M M

n n n
m m m m m m

m m m

w

w w w

w w w n L
n

μ η ξ

μ η ξ

=

= = =

= = =

=

= = =

= = = ≤
+

∑

∑ ∑ ∑

∑ ∑ ∑

 (2-29)

The directions and their associated weights can be calculated by Eqs. 2-28 and 2-29.
Level-symmetric quadrature only can conserve moments to an order of maximum L=N/2
because of the symmetry condition. Another disadvantage of level-symmetric quadrature is
that Eqs. 2-28 and 2-29 lead to negative weights if N is greater than 20. Negative weights are
not physical. Therefore, they cannot be used. This means that the order of Level-Symmetric
quadrature is limited to 20.

2.7.2 Legendre­Chebyshev Quadrature

The Legendre-Chebyshev quadrature, also called PN-TN quadrature, aims to conserve
moments to a maximum order without the constraints of the symmetry condition. Figure 2-8
shows a PN-TN S10 quadrature layout.

Figure 2-8. PN-TN quadrature of order 10.

The Legendre-Chebyshev quadrature conserves moments to the order of 2L-1, instead
of L in the level-symmetric quadrature set (L=N/2), at the cost of lack of rotation invariance.
Moments in Eq. 2-28 cannot be conserved strictly in the PN-TN quadrature. Note that Figures

24

2-7 and 2-8 share a similar triangle-shaped direction layout on the unit sphere, because Eq 2-
27 still holds in the PN-TN quadrature. The direction weights are positive definite in the PN-
TN quadrature. Therefore, unlike the level-symmetric quadrature set, the PN-TN quadrature
order is unlimited mathematically, except for the limitation of computer memory limitation.

We have derived the procedure on how to build the PN-TN quadrature on the unit
sphere. Based on the procedure, it can be shown that the PN-TN quadrature is the best choice
in mathematically conserving higher moments. We also have proved the positivity of weights
in PN-TN quadrature. Details of the above derivations are given in Appendix B. To build a
PN-TN quadrature set, it is required to find the roots of an even order Legendre polynomial.
These roots are used as level positions of the quadrature. A modified Newton’s method is
applied. Details of the algorithm also are given in Appendix B.

2.8 Ordinate Splitting
Ordinate splitting is a technique associated with a quadrature set (Ref. 20). A selected

direction in a quadrature set can be further split into a number of directions. The total weight
of the split directions is equal to the weight of the original direction in the quadrature. We
apply the ordinate splitting techniques to solve problems with highly peaked angular-
dependent flux and/or source.

2.8.1 Rectangular and Pn­Tn Spliting

Figure 2-9 depicts the two splitting directions for one direction of an S10 quadrature set.
Note that ordinate splitting technique is independent of choice of quadrature set type or order,
and can be applied to as many directions as necessary.

A B

Figure 2-9. Ordinate splitting technique. A) Rectangular splitting. B) PN-TN splitting.

25

In the rectangular splitting technique, the split directions are uniformly distributed
within a box-shape region centered at the original quadrature direction. In the TITAN code,
the size of the box can be defined by users. The total number of splitting directions can be
calculated from the user-specified splitting order with Eq. 2-30.

2(2 1)s l= − (2-30)

Where s is the total number of splitting directions, l is the splitting order. Figure 2-9A shows
the 25 split directions for a rectangular splitting with an order of 3. All the splitting directions

are equal-weighted, defined as 1
s nw w

s
= , where nw is the weight of the original direction,

which remains in the quadrature set after splitting with a reduced weight.

The rectangular-shaped layout of the split direction may not be efficient in conserving
the moments. We developed the Legendre-Chebyshev (PN-TN) splitting technique based on
the regional angular refinement (RAR) technique.26 In the PN-TN splitting, the original
direction can be associated with a local area on the unit sphere surface centered on the
original direction. And the range of the area can be decided by users as in the rectangular
splitting. The technique projects the directions in the first octant of a regular PN-TN
quadrature set with an order of 2l (l is the splitting order), into the local area. For a regular
PN-TN quadrature, usually there is only one direction on the top level as shown in Figure 2-8.
For the local PN-TN quadrature fitted in the splitting technique, users can specify the number
of directions on the top level. The number of directions on the following levels increases by
one from the previous level, as for a general PN-TN quadrature. Therefore, the total number of
split directions can be calculated by:

(2 1)
2

t l ls + − ⋅
= (2-31)

Where t is user-specified number of directions on the top level, and l is the splitting order.
The weights of the split directions are calculated in the same way as a general PN-TN
quadrature, except that we normalize the total weight to the original direction weight, instead
of unity as in a general PN-TN quadrature. The split direction weights is calculated by Eq. 2-
32.

TSPSns wwww __ ⋅⋅= (2-32)

Where nw is the original weight of the splitting direction, PSw _ and TSw _ are the level

weight and the Chebyshev weight, respectively for one split direction in the local PN-TN
quadrature. Note that unlike the rectangular splitting, the original splitting direction is
dropped off after splitting in the PN-TN splitting technique. However, the split directions
could be more ‘uniformly’ distributed within the splitting region than the rectangular splitting,

26

since it is formed ‘uniformly’ on a sphere surface instead of a rectangular region, and also the
PN-TN quadrature conserves integrations more accurately than an equal-weighting
formulation.

2.8.2 Circular Splitting

Circular Ordinate Splitting (COS) technique is originally developed to simulate the
SPECT collimator blurring effect (Ref. 4) as shown in Figure 2-10.

Figure 2-10 Circular ordinate splitting in a fictitious quadrature set (See section 2.10)

 In the COS, the split directions are located along a circle centered on the original
projection direction. The radius of the circle is calculated based on the SPECT collimator
acceptance angle. We use quaternions to mathematically describe rotations and calculate the
directional cosines for each direction. By averaging the angular fluxes over the original and
split directions, we can simulate part of the projection image blurring effects due to the
collimator acceptance angle. Note that particle transport within the collimator is not
simulated in the deterministic calculation. In other words, we assume all particles travelling
outside the acceptance angle will be absorbed in the collimation septa. As with other ordinate
splitting techniques, the number of split directions in the COS is determined by the splitting
order. The splitting order is the number of directions on one circle, however, a user can
consider more than one circle, and therefore achieve a more refined angular representation.

2.9 Projections on the Interface of Coarse Meshes
The TITAN code is built on the multi-block framework with the source iteration

scheme. Both the block-oriented SN and characteristics solvers can apply an individual
quadrature set and fine-meshing scheme on each coarse mesh. Transport calculations can
benefit from the multi-block framework, which provides users more options on the choices of
discretization grids in different regions of a problem model. However, the benefits are not
free in term of computational cost. In Step 1 of the source iteration scheme, while sweeping

27

across the interface of two coarse meshes, we need to project the angular flux on the interface
from one frame to the other, if the two coarse meshes use different quadrature sets and/or
fine-meshing schemes. Therefore, angular and spatial projection techniques are developed to
transfer the interface angular fluxes in the coarse-mesh-level sweep process.

2.9.1 Angular Projection

Angular projection is triggered by the two adjacent coarse meshes with different
quadrature sets. Figure 2-11 shows the layout of directions in two quadrature sets.

A B

Figure 2-11. Angular projection. A) Level-symmetric S10 (red) to PN-TN S10 (green). B) S10
to S8.

Figure 2-11A compares the directions for the level-symmetric and PN-TN quadrature
sets of order 10. Figure 2-11B presents a more general situation of angular projection: from a
higher order quadrature to a lower order quadrature, or vice versa. In general, an angular
projection from quadrature P to quadrature Q is used to evaluate the angular fluxes for the
directions in quadrature Q for each fine mesh on the interface, based on the angular fluxes
from quadrature P. For each direction nΩ in quadrature Q, we search for the closest three

neighboring directions in quadrature P to nΩ . The angular flux for nΩ can be calculated by a

mθ
1 weighting scheme, where m is a positive integer, and θ is the angle between nΩ and one

neighbor direction in quadrature P. Note that θ also represents the shortest distance between

nΩ and its neighbor on the surface of a unit sphere. As shown in Figure 2-12, P1, P2, and P3

are the three closest neighbors in quadrature P to nΩ in quadrature Q.

28

Figure 2-12. Theta weighting scheme in angular domain.

If we consider that the distances between nΩ and the three closest neighbors are 1θ , 2θ ,

and 3θ , respectively, then the angular flux at nΩ can be written as:

⎪
⎪
⎩

⎪⎪
⎨

⎧

++⋅

≤=
=

−

otherwise
f

if

m
A

m
A

m
A

m

iA
m

Q

i

j

)(1

 10),,min(,

321
)(

4
321

)(

321

θ
ψ

θ
ψ

θ
ψ

θθθθψ
ψ (2-33)

Where)(mf is the m’th normalization factor and defined as mmm
mf

321

)(111
θθθ

++= . Note that

we set the angular flux at nΩ equal to the closest neighbors, if the minimum distance is less

or equal than 410− radians.

The 0’th moment (scalar flux) and the first moment (flux current) of the angular flux
have to be conserved after an angular projection. Therefore, we need to maintain:

jjii Q

M

j
QP

N

i
P ww ψψφ ∑∑

==

==
11

 (2-34)

jjjiii Q

M

j
QQP

N

i
PP wwJ ψμψμ ∑∑

==

==
11

 (2-35)

Where, N and M are the total number of directions in one octant in quadratures P and Q,
respectively.

iPμ is the cosine of the angle between the interface normal direction and

direction i in quadrature P.
jQμ is the cosine of the angle between the interface normal

direction and direction j in quadrature Q. And w’s are the direction weights. Note that the

total weights are set to one for both quadrature sets (1
11

== ∑∑
==

M

j
Q

N

i
P ji

ww). In order to evaluate

P1

P2 × × P3

× nΩ

 1θ

 2θ 3θ

29

)(Q
jψ , while conserving the scalar flux and the current, we assume

jQψ is a linear combination

of)1(
jQψ and)2(

jQψ .

)2()1(
jjj QQQ ψβψαψ ⋅+⋅= (2-36)

Where,)1(
jQψ and)2(

jQψ are calculated with Eq. 3-1 with m=1, 2, respectively. And α and β are

the linear coefficients, which can be evaluated by substituting Eq. 3-4 into Eqs. 3-2 and 3-3.

)()()()()1(

11

)2()2(

11

)1(

1

)1()2(

1

jjjjjjjjjj

jjjjj

Q

M

j
Q

M

j
QQQQ

M

j
Q

M

j
QQQ

M

j
QQQQ

M

j
Q

wwww

wwJ

ψψμψψμ

ψμφψ
α

∑∑∑∑

∑∑

====

==

⋅−⋅

⋅−⋅
= (2-37)

)()()()()1(

11

)2()2(

11

)1(

)1(

11

)2(

jjjjjjjjjj

jjjjj

Q

M

j
Q

M

j
QQQQ

M

j
Q

M

j
QQQ

Q

M

j
Q

M

j
QQQ

wwww

wJw

ψψμψψμ

ψψμφ
β

∑∑∑∑

∑∑

====

==

⋅−⋅

⋅−⋅
= (2-38)

 Once)1(
jQψ ,)2(

jQψ , α, and β are evaluated by Eqs. 3-1, 3-5, and 3-6,
jQψ can be

calculated by Eq. 3-4. Under this angular projection scheme, the scalar flux and the first flux
moment remains the same for each fine mesh on the interface before and after the projection.
It is also possible to conserve higher moments at additional computational cost. We can

always introduce higher order weighting schemes with Eq. 3-1 (e.g. 3
1
θ

, 4
1
θ

), then more

terms and coefficients can be added in Eq. 3-4. In order to calculate the linear combination
coefficients (α, β, γ etc.), higher moment conservation equations can be introduced besides
Eqs. 3-2 and 3-3. Although the scattering source term defined by Eq. 2-23 is calculated with
all flux moments up to the order of L, generally it is not necessary to conserve flux moments
with an order higher than one on the interface, since only the 0’th and first moments carry
physical meanings (scalar flux and flux current), other than just a mathematical term.

In the TITAN code, we also apply a negative fix-up rule to keep the positivity of
angular fluxes by relaxing the 0’th and/or the first moment conservation rule if necessary.
The angular projection can be used with any type of the quadrature set. It is also compatible
with the ordinate splitting technique. In order to perform a relatively efficient angular
projection, it is recommended that both projecting and projected quadrature sets have at least
three directions per octant (i.e. at least S4). If there is only one direction in one octant (i.e. S2),
the direction can be considered as three directions with the same position and only one-third
of the original weight, so the above angular projection procedure still can be performed
without any modifications.

30

2.9.2 Spatial Projection

Spatial projection is triggered if the fine-meshing schemes mismatch on the interface
of two adjacent coarse meshes. Figure 2-13 shows a projection situation between a 3x3
meshing scheme and a 2x2 meshing scheme.

A B

Figure 2-13. Mismatched fine-meshing schemes on the interface of two adjacent coarse
meshes. A) 3-D layout. B) 2-D layout.

In Figure 2-13B, we denote the 3x3 fine meshes on the green surface as g(1,1),
g(2,1) … g(3,3), the 2x2 fine meshes on the red surface as r(1,1), r(2,1) … r(2,2). The
average angular fluxes on these fine meshes can be referred to as)3,3()1,1()()(gg ψψ → and

)2,2()1,1()()(rr ψψ → .

Assuming a green-to-red projection, we need to calculate)2,2()1,1()()(rr ψψ → based

on)3,3()1,1()()(gg ψψ → by an area weighting scheme. Here, we only demonstrate how to

calculate the angular flux on fine mesh r(1,1). The rest of the red meshes can be evaluated
based on the same approach.

)1,2()1,2()2,2()2,2()2,1()2,1()1,1()1,1(

)1,1(
)1,2()2,2()2,1()1,1()1,1(

)1,1(

)()()()(

321

321

gggggggg

g

ggggg
r

ffff

AAAA
AAAA

ψψψψ

ψψψψ
ψ

⋅+⋅+⋅+⋅=

+++
⋅+⋅+⋅+⋅

=
 (2-39)

Where A1, A2, and A3 are the shade areas in Figure 3-3B. Ag(1,1) is the area of fine mesh
g(1,1). Since fine meshes are uniformly distributed on either surface, we can denote

31

gg AA =)1,1(. Note that 321)1,1(AAAAA gr +++= is the area of fine mesh r(1,1). Therefore,

the factor)(gf can be denoted as:

r
g

r
g

r
g

r

g
g A

Af
A
Af

A
Af

A
A

f 3
)(

2
)(

1
)()()1,2(,)2,2(,)2,1(,)1,1(==== (2-40)

If we assume a red-to-green projection, () ()(1,1) (3,3)g gψ ψ→ will be evaluated based

on () ()(1,1) (2, 2)r rψ ψ→ . The same area weighting scheme can be applied:

g

g
r

g
rg

rg

A
AA

A
A 3

)(
3

)()(

)()(

)1,2()1,1()1,2(

)1,1()1,1(

−
⋅+⋅=

=

ψψψ

ψψ

 (2-41)

The area weighting scheme can conserve the angular flux for each fine mesh,
assuming a flat flux distribution within fine meshes. Therefore, the total angular flux over the
entire interface is conserved automatically. The post re-normalization process described in
the angular projection is not necessary in spatial projection. In the TITAN code, we separate
the 2-D projection to two single 1-D projections in order to reduce computation cost. For
example, a 2-D 4683 ×→× projection can be separated as a 63→ projection along x axis,
and an 48→ projection along y axis, because x and y projections are actually independent of
each other. Generally, a projection pair, mn → and nm → , require mn××2 memory units
to store the geometry meshing factors ()(gf ,)(rf). However, since most of the factors are

zeros, we store only the non-zero factors with a sparse matrix for each projection pair. Note
that the factors in an mn → projection remain the same whether they are applied in an x or
y axis projection.

2.9.3 Projection Matrix

Both angular and spatial projections could be expensive in the source iteration scheme,
because for every iteration, they are performed whenever the ‘sweep’ processes cross the
interface of two coarse meshes with different angular or spatial frame. If both projections are
required on an interface, we perform the angular projection first, then the spatial projection.
A projection from coarse mesh A to coarse mesh B on the interface can be described as

B AB APψ ψ= (2-42)

Where PAB is a projection matrix, which stores all the necessary geometry information on the
interface. Since projection matrices are independent of angular fluxes, they can be calculated
and stored before the sweep process starts.

2.10 Fictitious Quadrature
We introduce a special kind of problems that the TITAN code can be applied: the

particle transport problem within a digital medical phantom. To solve a regular transport

32

problem, modeling of the problem is required as one of the initial tasks. And a meshing
scheme need to be carefully chosen based on the physics of the problem. While in a digital
phantom, the source and material distributions are stored in the format of voxel values as
activity (source) and material attenuation coefficients. Therefore, it is a natural choice to
consider one voxel as one fine mesh in the initial modeling task. In the TITAN code, a
module is developed to process the digital phantom binary files and automatically generate
the meshing scheme. Furthermore, since transport calculations for medical phantoms often
involve the simulations of radiation projection images, we developed the fictitious quadrature
technique to calculate the angular fluxes for specific directions of interest that may not be
available in a regular quadrature set. The performance of the technique is tested in a digital
heart phantom benchmark.

2.10.1 Extra Sweep

In the TITAN code, multiple quadrature sets can be used in one problem model. A
regular quadrature is built based on the criteria of conservation of flux moments. Fictitious
quadrature is designed differently from the regular type of quadrature in that its purpose is to
calculate only the angular fluxes for certain directions, not to conserve the flux moments.
Therefore, it can not be used in a regular sweep process since the scattering source and flux
moments cannot be properly handled. However, it can be used after the source iteration
process is complete with the converged flux moments.

Generally, in a transport problem, users’ major concern is the scalar flux distribution
and/or k-eff. However, in some cases, the angular fluxes in the directions of interest need to
be evaluated. Since the directions are not necessarily included in the problem quadrature sets,
the angular fluxes in these directions usually cannot directly be calculated by the sweep
process with a regular quadrature set. In the TITAN code, we can define the directions of
interest in a fictitious quadrature set, which is used with an extra sweep process only after the
source iteration process is converged with the regular quadrature set(s). The converged flux
moments are used to evaluate the scattering source in the extra sweep with the fictitious
quadrature.

[])sin()cos(

)(
)!(
)!(2)({)12(

)()(
,',

)()(
,',

1' 1

)(

0

)(
,'

)(
,',

.).(

fic
n

conk,
lgS

fic
n

conk,
lgC

G

g

l

k

fic
n

k
l

L

l

con
lg

fic
nllggs

se
scattering

kφkφ

P
kl
klPlS

ϕϕ

μφμσ

⋅+⋅

⋅
+
−

+⋅+= ∑ ∑∑
= ==

→
 (2-43)

Where, upper script (e.s) stands for extra sweep, (fic) for fictitious, (con) for converged.
)(

,'
con

lgφ ,)(,
,',

conk
lgCφ , and)(,

,',
conk

lgSφ are the converged thl order regular, cosine and sine flux moments.

And) ,()()(fic
n

fic
n ϕμ specifies a direction in the fictitious quadrature set.

Equation 6-1 is similar to Eq. 2-23, except that we use the converged flux moments
after the source iteration process instead of the flux moments from last iteration. And the
polar and azimuthal angles refer to a direction in the fictitious quadrature set. The fixed

33

source or the fission source can be evaluated the same way as in a regular sweep process.
After the total source is estimated, we can use the extra sweep process to evaluate the angular
fluxes in the directions of the fictitious quadrature.

One also could choose some other methods based on the calculated angular fluxes in
the quadrature directions to evaluate the angular fluxes of interest. For example, the angular
projection technique in Chapter 3 can be applied with some modifications. We have tried this
approach in the TITAN code. Another method could be to apply the Legendre expansion of
the angular flux based on the converged flux moments. One potential problem with these two
approaches is that their efficiencies are subject to the accuracy of the angular fluxes in the
directions of a regular quadrature set. Usually a convergence criterion is set on the scalar flux
in the source iteration scheme. The accuracy of the angular fluxes or higher moments is not
always granted. And further mathematical manipulations on the angular fluxes or higher
moments could introduce more secondary inaccuracies. One advantage of the fictitious
quadrature technique over the secondary approaches is that the angular fluxes of interest are
calculated directly from a sweep process. And since the sweep process can be considered as a
simulation procedure to the physical particle transport phenomenon in certain directions,
some physics of the model along the interested directions (e.g. fixed source and scattering)
are taken into account in the evaluation process. Thereby, the extra sweep with the fictitious
quadrature has more potential to provide an accurate estimation on the interested angular
fluxes.

2.10.2 Implementation of Fictitious Quadrature

It is straightforward to implement the fictitious quadrature technique, since all the
formulations used in a regular sweep can be applied in the extra sweep. However, due to the
special design of the fictitious quadrature, some modifications on the regular sweep are
required to effectively complete an extra sweep.

The extra sweep starts upon the completion of the source iteration process. The
fictitious quadrature is built as an initialization task before the source iteration starts.
Fictitious quadrature sets can be treated as a regular user-defined quadrature set in the
initialization process, except that any direction regardless of its octant can be defined in the
quadrature input file, and these directions can be arbitrarily chosen. Note that in a regular
user-defined quadrature set, only directions in the first octant are defined, and directions in
other octants are determined by symmetry. As a result, the extra sweep is performed only
along specific directions defined in the first octant. The extra sweep procedure can be
illustrated by Figure 2-13.

34

Figure 2-14. Extra sweep procedure with fictitious quadrature.

As shown in Figure 2-14, we start the extra sweep by reallocating the angular flux
array based on the fictitious quadrature set. Since the values of angular fluxes in the regular
quadrature sets will be lost after the memory reallocation, any task which requires the
calculated angular fluxes need to be completed before the extra sweep. At the beginning of
the sweep for group g, we allocate a new array for the boundary angular fluxes, which will be
deallocated after the group g sweep. The original boundary fluxes calculated from regular
sweep remain untouched during the extra sweep, because an angular projection from the
regular quadrature to the fictitious quadrature could be employed on the boundaries if
reflective boundary condition is used. We apply the same scattering-in moment approach
discussed in Chapter 5 in the extra sweep as well. Note that the scattering-in moments are
calculated based on the converged flux moments from regular sweeps, and they are only used
for evaluation of the scattering source in an extra sweep. Also note that the step to calculate
flux moments in a regular sweep is removed in the extra sweep procedure.

We developed a new set of subroutines to complete the extra sweep. Most of these
new routines are on layer 3 or 4, including the angular projection module, the coarse mesh
sweep routine, and the differencing scheme routine. Although these subroutines share the
similar tasks as their counterparts in the regular sweep, some modifications are required due
to the following concerns:

• Iteration structure.

• Direction singularity.

• Solver compatibility.

The iteration architecture in a regular sweep for group g is built on the following order
(from outer to inner): Octant loop, coarse mesh loop, direction loop, fine mesh loop.

Source Iteration Completion

1. Reallocation Ang. Flux

2. Initialize Boundary flux for group g

3. Recalculate group g in-moments

Initialize fictitious
quadrature set

4. Group g extra sweep

5. Output group g boundary flux

Group Iteration

35

However the characteristics of the fictitious quadrature require that the extra sweep to follow
a different order: direction loop, coarse mesh loop, fine mesh loop. This structure change
affects most of routines on layer 3 and 4, since all the directions in the same octant are
handled as a group in the regular sweep, while in an extra sweep, each direction need to be
treated individually. For example, the coarse mesh or fine mesh sweep order is assigned
individually for each direction instead by octant. Another modification is made to allow
negative directional coordinates in the user-defined fictitious quadrature set.

A regular quadrature set usually avoids directions along an axis or perpendicular to an
axis. Zero directional cosine or sine occurs for these directions. This singularity could cause
some potential problems in the sweep process. For example, in the differencing scheme
discussed in Chapter 2, normally a small perturbation in one boundary incoming angular flux
can cast some effect on all the three outgoing fluxes, since the three components of the
incoming angular flux along x, y and z axes are all positive definite or all zeros. For a
singular direction, however, this is not always true. For example, an incoming angular flux
along the x axis only has only one positive x component. Therefore, while calculating the
outgoing fluxes, a differencing scheme need to take measures to treat a singular incoming
angular flux.

Unfortunately, singular directions often happen to be the interested directions in a
fictitious quadrature set. A series of modifications have been made to keep the extra sweep
subroutines singularity safe, including the differencing scheme, the fine mesh sweep
procedure, and the angular projection routine.

The two-solver structure of the TITAN code causes another dimensional difficulty in
the implementation of the fictitious quadrature set. The technique is originally designed for
the SN solver only. Later the compatibility to the characteristics solver is achieved.

36

 Chapter 3 - Code Structure

The fundamental structure of the TITAN code is built on the four steps of the Source
Iteration (SI) scheme with the multi-block framework. And the SN and characteristics solver
kernels are integrated in Step 1, in which we apply the ‘sweep’ process to solve the LBE for
angular fluxes. ‘Sweep’ is a process to calculate the outgoing flux from the incoming flux for
a coarse mesh, a fine mesh (SN), or a region (characteristics) by simulating the particle
transport along certain directions. The fine mesh/region averaged angular fluxes are updated
during the process. In Step 2, we evaluate the flux moments based on the angular flux
calculated in Step 1 by a numerical quadrature set, then use the flux moments to update the
source in Step 3 for next iteration. The iteration process continues until fluxes are converged
based on a convergence criterion.

In this chapter, first we introduce the overall block structure of the code. Then, we
further discuss the transport calculation block, with some details of several key subroutines.
Finally, the front-line style sweep process is presented.

3.1 Block Structure
The TITAN code is composed of three major blocks: input, processing, and output.

The input block loads the input decks to initialize the model material and the fixed source
distribution, meshing scheme, and some control variables. The processing block performs the
transport calculation. And the output block handles the calculation results. In this section, we
introduce the input and output blocks. The processing block is discussed in the next section.

The input files include the cross-section data file, and a block-structured input deck, to
setup some control variables such as quadrature sets and solvers for each coarse mesh. By
default, the output block writes up the material number, the source intensity and the
calculated scalar flux for each fine mesh into a TECPLOT-format binary data file. The data
in this file is organized by coarse meshes. Each data point/fine mesh is composed of an array
of values: xyz coordinates of the center of the fine mesh, material number and fixed source
intensity in the fine mesh, and the average scalar flux for each energy group. Comparing to
the ASCII format of the TECPLOT data file, the binary file is smaller in size and faster to
load by TECPLOT for various plotting. As an option, the output block can also prepare the
input deck for the PENTRAN code.

3.2 Processing Block
The subroutines in the processing block can be roughly arranged in four levels. The

lower level routines are called only by the immediate upper level routines. The top level (0th
level) routines choose the corresponding module for different types of problems (shielding or
criticality). The first level routines setup the source iteration schemes for all energy groups.
The second level routines complete one system sweep for all the directions in the quadrature

37

sets for one group. The third level routines only handle one sweep for all the directions in one
octant for one coarse mesh and one group. Finally on the forth level, we apply the SN or
MOC formulations discussed in Chapter 2 to calculate the angular flux in one fine mesh (SN)
or one region (characteristics). Figure 3-1 shows the major subroutines within the four-level
code structure. In the following sections, we further discuss some of the routines on each
level.

38

Figure 3-1. Code structure flowchart.

Within group loop till flux converged

Ray

Sn

 Loop for each direction in one octant
 Loop for each parallel ray

 Loop for each direction in one octant

Loop for each FM in the sweep order

 loop for octant=1, 8

 Loop for each CM in the sweep order

L0.1 Input Block

L0. 2 Processing Block

L0.21 TransCal L0.22 UpScaCal L0.3 Output Block

L1.1-3
CreatQuad

‘ L0.23 or L0.24 k outer loop for criticality problems

L0.22 outer loop for upscattering

L0.21 loop : group=1,num_grp

L1.1 InitSn

L1.1-4
InitCMflux

L1.1-5
InitProjection

L1.1-1 GetXs L1.1-2
InitInter

L1.2 GetInMnt_G L1.3 SolverSn_L1_S1 L1.4 UpdateScaFlx L1.5 FissionSrc

L1.2-1
GetInMnt_Sn

L1.2-2
GetInMnt_Ray

L2.1 Map
Bnd2inter

L2.2 CM
SweepOrder L2.3 InitCM

L2.3-1
InitCM_Sn

L2.3-2
InitCM_Ray

L2. 4-1 SolverSn_L2_S1
L2. 4-2 SolverRay_L2_S1 L2.5 FreeCM

L2.5-2
FreeCM_Ray L2.5-1

FreeCM_Sn

L2.6 Map
Inter2Bnd

L2.7 CalMnt

L2.7-1
CalMnt_Sn

L2.7-2
CalMnt_Ray

L3.1 Angular
Projection

L3.2 Spatial
Projection

L3.3 FM
SweepOrder

L3.4 Map
Sys2CM

L3.5 Get
FmSrc_CMin L3.6 DiffScheme L3.7 Map

CM2Sys

L3.8 GetZnSrc_CMin L3.9 GetBakFlx L3.12MapCM2Sys L3.10 GetRayAvg L3.11 GetZnAvg

39

On the top level, TITAN has a simple three-block structure: input block, processing block,
and output block. In the processing block, four kernel subroutines are available for different
types of problems:

L0.21 TransCal: fixed source problem with only down scattering.

L0.22 UpScaCal: fixed source problem with upscattering.

L0.23 Ksearch: criticality problem with only down scattering.

L0.24 Ksearch_up: criticality problem with upscattering.

Based on some parameters from the input block, we choose one of the four subroutines to
perform the transport calculation. TransCal provides the fundamental loop structure of the
source iteration scheme. Here, we assume that the source iteration scheme starts from the energy
group loop. The other three subroutines require one (L0.22 and L0.23) or two (L0.24) additional
outer loops besides the fundamental source iteration scheme loop structure (L0.21). They are
designed for problems with upscattering and/or criticality problems.

3.2.1 First Level Routines: Source Iteration Scheme

The flowchart on the first level demonstrates the structure of the processing block. The
subroutines on this level can be illustrated in the following pseudo-code.

Figure 3-2. Pseudo-code of the source iteration scheme.

Subroutine L1.1 InitSn is designed to complete the initialization works before the transport
calculation starts. This initialization includes loading cross section data, allocating memory for

!! Pseudocode: processing block (TransCal, UpScaCal, Ksearch, Ksearch_up)

Call InitSn
Loop outer_k ! k loop(power iteration) if eigenvalue problem

Loop outer_g ! outer_g loop if upscattering presents
For g=1, num_group ! group loop

 call GetInMnt_G(g)
 while (flux not converged) ! within group loop
 call SolverSN_L1_S1(g)
 call UpdateScaFlx(g)

 end within group loop

end group loop

 end outer_g loop ! if upscattering presents

 call FissionSrc ! if k loop presents

End outer_k loop

40

interface fluxes, angular fluxes, and flux moments, and initialization of the quadrature sets and
projection matrices.

Subroutine L1.2 GetInMnt_G is called at the beginning of each group loop. And it has
only one input argument: group index g. GetInMnt_G(g) calculates the flux moment summation
for all other groups other than group g, which we call scattering-in-moments, or in-moments. In-
moments are used to efficiently calculate the scattering source, which is performed in Step 3 of
the source iteration scheme. By applying the in-moments, we can rewrite Eq. 2-23 by switching
the group and Legendre order expansion.

() (1)
, ' , , ', ,

' 1 0 1

,(1) ,(1)
 ', , ',

, ' , , ',
0 ' 1

'

() !(2 1) { () 2 ()
() !

 [cos() sin()]}

(2 1){ ()[

G L l
i i k

scattering s g g l x l n g l x l n
g l k

k i k i
C g l x n S g l n

L G

l n s g g l x g
l g

g g

l kS l P P
l k

k k

l P

σ μ φ μ

φ ϕ φ ϕ

μ σ φ

−
→

= = =

− −

→
= =

≠

−
= + + ⋅

+

+

= +

∑ ∑ ∑

∑ ∑ (1) (1)
, , , , , ,

,(1) ,(1)
, ' , , ', , , , , , ,

1 ' 1
'

,(
, ' , , ',

1 ' 1
'

]

() !2 () cos() []
()!

() !2 () sin() [
()!

i i
l x s g g l x g l x

l G
k k i k i

l n n s g g l x C g l x s g g l x C g l x
k g

g g

l G
k k i

l n n s g g l x S g l
k g

g g

l k P k
l k

l k P k
l k

σ φ

μ ϕ σ φ σ φ

μ ϕ σ φ

− −
→

− −
→ →

= =
≠

→
= =

≠

+ +

−
⋅ + +

+

−
⋅ ⋅

+

∑ ∑

∑ ∑ 1) ,(1)
, , , ,]}k i

s g g l x S g lσ φ− −
→+

 (3-1)

In Eq. 3-1, the terms of (1)
, ' , , ', ,

' 1
'

G
i

s g g l x g l x
g
g g

σ φ −
→

=
≠

∑ , ,(1)
, ' , , ', ,

' 1
'

G
k i

s g g l x C g l x
g
g g

σ φ −
→

=
≠

∑ , and ,(1)
, ' , , ',

' 1
'

G
k i

s g g l x S g l
g
g g

σ φ −
→

=
≠

∑ are

defined as zero in-moments, cosine in-moments and sine in-moments. Mathematically, this
formulation seems more complicated than Eq. 2-23. However, it is more efficient to evaluate
scattering source. The in-moments can be pre-calculated before the within-group starts, since
they are independent of group g moments, which are the only changing moment terms between
the within-group loops. Therefore, once the in-moments are pre-calculated by the subroutine
GetInMnt_G, the summation process over all groups inside the within-group loop reduces to a
two-term summation: in-moments plus the group g moments.

Inside the subroutine GetInMnt_G, we calculate the in-moments for all the coarse meshes.
If the characteristics solver is assigned to a coarse mesh, Subroutine L1.2-2 GetInMnt_ray is
called to calculate the in-moments for each region in the coarse mesh. Otherwise, L1.2-1
GetInMnt_Sn is called to calculate the in-moments for each fine mesh within the coarse mesh.

Subroutine L1.3 Solver_Sn_L1 is the kernel subroutine on this level, which completes one
system sweep for a given group g. Its structure is illustrated on the next level. Subroutine L1.4
UpdateScaFlx is used to calculate the scalar fluxes for the current iteration, and evaluate the
maximum difference from the previous iteration. Solver_Sn_L1 and UpdateFlx are the two major

41

subroutines of the within-group loop. They are repeatedly called until the maximum scalar flux
difference between two interations satisfies the user-defined convergence criterion.

L1.5 FissionSrc is called at the end of each k-effective loop (power iteration) to update the
fission source and the k-effective for the next power iteration. The fission source is considered as
an isotropic fixed source for all the other inner loops (within-group loop and upscattering loop).
Fission source is evaluated for each fine mesh. Then, the k-effective is calculated by using Eq. 2-
25. More advanced formulas derived from power iteration acceleration techniques can be
investigated and applied within the scope of this subroutine.

3.2.2 Second Level Routines: Sweeping on Coarse Mesh Level

The subroutines on this level are called by the kernel subroutine SolverSN_L1_S1 of the
first level. Two inner loops, octant loop and coarse mesh loop are constructed in
SolverSN_L1_S1. Its structure can be illustrated in the following pseudo code.

Figure 3-3. Pseudo-code of the coarse mesh sweep process.

Subroutines L2.4-1 SolverRay_L2_S1 and L2.4-2 SolverSn_L2_S1 are the kernel
subroutines, which complete the sweep process within the scope of one coarse mesh for
directions in one octant and for a given group by using either the characteristics solver or the SN
solver. The detail structures of the two subroutines are illustrated in the next section.

Subroutines L2.1 MapBnd2inter and L2.6 MapInter2Bnd are used in the sweep process on
the system level. The sweep process starts from the three incoming boundaries of the model for
the directions in a given octant, and ends at the three outgoing boundaries. At the incoming
surfaces, model boundary conditions need to be applied. And if the outgoing surfaces are
reflective or albedo boundaries, the outgoing angular fluxes need to be reflected back as
incoming fluxes for directions in another octant. Therefore, at the beginning of the system sweep

!! Pseudocode: SolverSn_L1_S1 (group) !group: energy group index
For octant=1, 8 ! octant loop
 call MapBnd2inter(octant,group)

call SweepOrder_cm(octant)
 for cm_ijk in the sweeping order !coarse mesh loop
 if (MOC solver is assigned to cm_ijk)

call InitCmRay(cm_ijk)
call SolverRay_L2_S1(cm_ijk, octant, group)

 call FreeCmRay(cm_ijk)
 else

call InitCmSn(cm_ijk)
call SolverSn_L2_S1(cm_ijk, octant, group)

 call FreeCmSn (cm_ijk)
 endif
 end cm loop
 call MapInter2Bnd(octant,group)
end octant loop
call CalMnt(group)

42

process, MapBnd2inter is called to map the incoming system boundary conditions to a system
interface flux array, while at the end of the sweep process, MapInter2Bnd is called to map the
system interface flux back to the model boundary.

Subroutine L2.2 SweepOrder_CM initializes the coarse mesh sweep order for directions in
a given octant before the coarse mesh loop starts. Subroutines L2.3 InitCM and L2.5 FreeCM are
designed to allocate and free memory for the interface flux array within one coarse mesh. More
details about the interface flux array will be discussed later. Both InitCM and FreeCM have two
versions corresponding to the characteristics and SN solver kernel.

Subroutine L2.7 CalMnt is called after the system sweep completes. The subroutine is
used to evaluate the flux moments (source iteration scheme: Step 2) based on the angular fluxes
calculated by the system sweep (source iteration scheme: Step 1).

3.2.3 Third Level Routines: Sweeping on Fine Mesh Level

Two sets of routines are built on this lowest level for the characteristics and SN solvers,
respectively. Both calculate angular fluxes within the scope of one coarse mesh, one octant, and
one group. Their structures can be illustrated by the following pseudo code.

Figure 3-4. Pseudo-code of the fine mesh sweep process.

!! Pseudocode: SolverSn_L2_S1 (cm_ijk, octant, group)
call Projection_H0 (cm_ijk , octant) ! angular projection
call Projection_D0 (cm_ijk , octant) ! spatial projection
call SweepOrder_fm(cm_ijk , octant)
For direc=1, num_direc ! direction loop within one octant
 call MapSys2CM(cm_ijk , direc)
 call GetFmSrc_CMin(cm_ijk, octant, direc, group)

for fm_ijk in the sweeping order !fine mesh loop
 call DiffScheme

end fine mesh loop
call MapCM2Sys(cm_ijk , direct)

end direction loop

!! Pseudocode: SolverRay_L2_S1 (cm_ijk, octant, group)
call Projection_H0 (cm_ijk , octant) ! angular projection
call Projection_D0 (cm_ijk , octant) ! spatial projection
For direc=1, num_direc ! direction loop within one octant
 call GetZnSrc_CMin(cm_ijk, octant, direc, group)

for each parallel ray ! ray loop
 call GetBakFlx
 call GetRayAvg

end ray loop
 call GetZnAvg

call MapCM2Sys(cm_ijk , direct)
end direction loop

43

Subroutines L3.1 Projection_H0 and L3.2 Projection_D0 complete angular and spatial
projection procedures. The two subroutines, called within SolverSn_L2_S1 and
Solver_Ray_L2_S1, remap the incoming flux array onto the same frame (in the angular domain
and spatial domain) as the current coarse mesh by the projection techniques. Note that here
angular projection is performed first if both projections are required.

For the SN solver, Subroutine L3.3 SweepOrder_fm initializes the fine mesh sweep order
for the following fine mesh loop. L3.4 MapSys2CM and L3.7 MapCM2Sys are similar to their
counterparts, L2.1 and L2.7, on the second level. However, here we need to map between the
system interface flux array and the coarse mesh interface array, instead of between the model
boundaries and the system interface flux array.

Subroutine L3.5 GetFmSrc_CMin calculates the total source term for each fine mesh
before the fine mesh loop starts. Within the fine mesh loop, L3.6 DiffScheme is called to
calculate the outgoing flux and fine-mesh-averaged flux based on the incoming flux by a
differencing scheme. The diamond-differencing and direction-theta-weighted differencing19
schemes are implemented. Other differencing schemes can be added into this subroutine.

The characteristics subroutine set is similar to the SN set with a two-level loop structure:
direction loop and parallel ray loop, instead of fine mesh loop in the SN solver. L3.8
GetZnSrc_CMin, as its counterpart L3.5 for the SN solver, calculates the total source term for
each zone, instead of each fine mesh. For each parallel ray, L3.9 GetBakFlx evaluates the
incoming flux by the bilinear interpolation scheme. L3.10 GetRayAvg calculates the average
angular flux for the current ray. After all the parallel ray average fluxes are updated, L3.11
GetZnAvg is used to calculate the average flux for the zone/coarse mesh. And the coarse mesh
outgoing flux is mapped back onto the system interface flux array.

3.3 Data Structure and Initialization Subroutines
The 4-level code flowchart, as outlined in the previous section, is built on the data

structure, which organizes of the data arrays, such as angular fluxes and flux moments. In the
TITAN code, a number of derived data types are defined by applying the paradigm of object-
oriented programming (OOP). These user-defined data objects, such as coarse mesh object,
quadrature object, and projection objects, are initialized in subroutine L1.1 InitSn at the
beginning of transport calculation. In recent years, OOP has already evolved into one standard
paradigm for modern coding language for computer applications. While FORTRAN 90/95,
designed mainly for scientific computing, generally is not considered as an object-based
language. However, FORTRAN 90/95 does provide some tools and language extensions to allow
users to utilize some concepts of OOP. And the OOP support is further enhanced in the new
FORTRAN 2003 standard.

In the TITAN code, coarse mesh is treated as a relatively independent object, within
which a number of parameters, arrays, and sub-object are defined. Among these parameters are
Solver_ID, Quad_ID, Mat_matrix, Src_matrix, and angular flux and flux moment sub-objects.

44

Solver_ID and Quad_ID specify the solver and quadrature set for the coarse mesh, respectively.
Mat_matrix and Src_matrix are the material and source distributions within the coarse mesh,
respectively. And the angular flux and moments for the coarse mesh are defined as sub-objects
for each group and octant. They are initialized in subroutine L1.1-4 InitCMflux.

Quadrature set is another essential object, which contains the direction cosine values and
the weights associated with the directions for each direction in one octant. L1.1-3 CreatQuad
generates all the quadrature sets with ordinate splitting used in the model. For the level-
symmetric quadrature, direction cosines and weights are preset for quadrature order from 2 to 20.
For the PN-TN quadrature set, since the quadrature order is not limited to 20 as level-symmetric
quadrature, directions cosines and weights are pre-calculated by a polynomial root-finding
subroutine. After one SN or PN-TN quadrature is created, another subroutine is called to build up
the splitting ordinates on top of the regular quadrature set.

As described by Eq. 2-43, the projection matrix should be pre-calculated in both spatial
and angular domain. In the spatial domain, L1.1-5 InitProjection scans all the coarse mesh
interfaces and analyzes all the projections on the interfaces of coarse meshes. Since a 2-D
projection is defined by two separated 1-D projections, only a 3 5→ projection matrix is
necessary for a projection of3 3 5 5× → × . The 2-D projection matrix is built implicitly by the 1-
D component projection matrix. Furthermore, 1-D projection matrix is always stored in pair, e.g.
3 5→ and5 3→ , because they always happen together on the same coarse mesh interface
depending the sweeping direction. Note that since the same projection could happen in a number
of interfaces, it is not necessary to build one projection matrix for every coarse mesh interface. In
such case, only one projection matrix is stored to reduce the memory cost. And a projection ID is
assigned to each coarse mesh interface to specify the associated projection matrix. The angular
projection matrix is built in a similar way, but with a subroutine to find the three closest neighbor
directions in one quadrature set to every direction in the other quadrature set. Afterwards, the
three neighboring direction indices and the distance weights are stored in an angular projection
matrix.

3.4 Coarse and Fine Mesh Interface Flux Handling
In the sweeping process, the fine-mesh interface flux propagates along the sweep direction.

Instead of storing all the interface fluxes for each fine mesh, we only store the fluxes on the
propagation frontline. As shown in Figure 3-5, for a 2-D coarse mesh with 4 by 4 fine meshes,
two one dimensional interface arrays, Inter_x(:) and Inter_y(:), can be allocated to store the
frontline interface flux, both with a size of 4.

45

Figure 3-5. Frontline interface flux handling.

At the beginning of the direction n sweep process, Inter_x and Inter_y are assigned to the
incoming fluxes at the bottom and left boundary, respectively. This task is completed by
subroutine L3.3 MapSys2CM. The sweep process starts from FM (1,1) by using Inter_y(1) and
Inter_x(1) as incoming fluxes. After the average flux for FM(1,1) is updated, we assign the
outgoing flux for FM(1,1) back into Inter_y(1) and Inter_x(1). And the rest of elements of
Inter_x and Inter_y remain the same. Therefore, for FM(1,2), Inter_x(1) and Inter_y(2) become
the incoming fluxes. Generally speaking, for FM(m,n), Inter_x(m) and Inter_y(n) always store
the incoming fluxes before the sweep begins, and the outgoing fluxes afterwards. For example,
after the sweep process updates the fluxes for the first 6 fine meshes, the blue line becomes the
propagation frontline. At this point, Inter_x stores the interface fluxes on the horizontal lines
along the blue front line, while Inter_y stores all the interface flux on the vertical lines. After all
the fine meshes are processed, Inter_x and Inter_y store the outgoing fluxes for the coarse mesh
at the top and right boundaries, respectively.

The front-line approach to handle the fine-mesh interface fluxes can be extended to the
sweep process in a 3-D coarse mesh. We use three 2-dimentional arrays to store the interface
fluxes: Inter_xy(:,:), Inter_xz(:,:), and Inter_yz(:,:), instead of Inter_x(:) and Inter_y(:) in a 2-D
coarse mesh. The front-line shown in Figure 4-2 becomes ‘front-surface’ in 3-D along x, y and z
axes.

The front-line approach is memory-efficient compared to the straightforward process to
store the interface fluxes for all the fine meshes. Under this approach, only the interface fluxes
on the marching front-line are stored. For the case shown in Figure 4-2, the frontline approach
only requires 8 memory units, while 40 memory units are necessary otherwise. For a 3-D coarse
mesh with i j k× × fine meshes, a total of (1) (1) (1)i j k i j k i j k× × + + × + × + + × × memory

Inter_y(:)

1

2

4

3

Inter x(:) 1 2 3 4

46

units are required if all the interface fluxes are stored. While the front-line approach only
requires i j i k j k× + × + × memory units. Another benefit of the frontline approach is to avoid
‘memory jumps’ for the fine mesh incoming fluxes during the sweep process. As shown in
Figure 4-2, the interface flux arrays, Inter_x(:) and Inter_y(:), are always accessed sequentially
as the frontline marches forward, which is much more efficient than ‘memory jumps’, especially
when handling large size arrays.

The same approach can be applied on the coarse mesh sweep process, in which a coarse
mesh is considered as the finest unit. However, each element of the interface flux array becomes
another array, or an object, instead of a scalar value as in the fine mesh sweep process. Here we
use another set of object arrays, called system interface arrays Inter_xy_cm(:,:), Inter_xz_cm(:,:),
and Inter_yz_cm(:,:), which are similar to Inter_xy(:,:), Inter_xz(:,:), and Inter_yz(:,:). They can
be considered as an array of arrays, or an array of objects on the system level, which means each
element in Inter_xy_cm(:,:) is another array, instead of a scalar value as in a regular array.
Inter_xy_cm(:,:) represents the front-line coarse mesh fluxes on the xy plane in the global sweep
process, as Inter_xy(:,:) represents the front-line fine mesh fluxes in a coarse mesh sweep
process. The system interface arrays are initialized by Subroutine L1.1-2 InitInter, and connected
to coarse mesh interface flux arrays by subroutines L3.3 MapSys2CM and L3.7 MapCM2Sys,
which performs two mapping actions:

• Mapping one system array element to the corresponding coarse mesh interface array as the
coarse mesh incoming flux before the fine mesh sweep process starts.

• Mapping the coarse mesh interface array back onto the system array element afterwards as
the outgoing flux.

47

Chapter 4 – I/O Structure

TITAN requires two input files: an input deck to define model geometry, transport
parameters etc; and a cross section data file. The input deck file name can be specified at
command line by using ‘-n’ option. By default, the file name is ‘titan.inp’. The cross
section data file name is specified in the input deck with keyword ‘xsfile’.

4.1 Input Structure
TITAN input deck uses a ‘section-keyword’ free style of format. The input deck

contains several sections, and each section accepts a number of keywords. Several
keywords can be specified in one line, and the entries for one keyword can be spread out
to several lines. An input deck can be prepared manually or by the PENMSHXP utility
code (Ref. 21).

4.1.1 General Parameters

The first section is to define some general parameters.

#0 /general transport parameter quadrature
/acceptable keywords: nquad, tquad, oquad, splitq(multi), ncmesh, numsrc, nummat, numgrp
/ nquad: number of quadratures.
/ tquad: type of quadratures, NumOfEntry=nquad (0=LevelSym, 1=LegendreCheby)
/ oquad: order of quadratures, NumOfEntry=nquad (even number)
/ splitq: ordinate splitting setup
/ splitq=QuadId, #Splitting, SplitDirIDs, SplitOrders, SplitType, Topnums, alpha
/ QuadId=1, 2,..or nquad, #Splitting=num of splitting directions
/ #Splitting= total num of splitting directions in QuadID
/ SplitDirIDs=splitting direction IDs in the base quadrature,NumOfEntry=#Splitting
/ SplitOrder=splitting order for each splitting direction,NumOfEntry=#Splitting
/ SplitType: 0=rectangular, 1=Pn-Tn, 2=circular, NumOfEntry=#Splitting
/ Topnum: rectangular: unused; Pn-Tn: Num of dirs on top level; circular: # of circles.
/ NumOfEntry=#Splitting
/ alpha: rectangular/Pn-Tn: unused (angular range for future version); circular: derail angle.
/ NumOfEntry=#Splitting
/ ncmesh: # of coarse mesh along x, y ,z . NumOfEntry=3
/ numsrc: # of sources . NumOfEntry=1
/ nummat: # of materials . NumOfEntry=1
/ numgrp: # of groups . NumOfEntry=1

ncmesh=3 3 3
numsrc=1
nummat=3
numgrp=1
nquad=1
tquad=1
oquad=60:

48

On the first line of the above example, ‘#0’ marks Section 0. The following lines
are comment lines, which are marked with ‘/’. The keywords used in this example are
explained as follows.

‘ncmesh’ is the number of coarse meshes along x, y, and z axis. Three entries are
required for this keyword. In this case, the model contains 3x3x3 coarse meshes.

‘numsrc’ is the number of coarse meshes containing fixed sources. In this example,
one of the 3x3x3 coarse meshes contains fixed source.

‘nummat’ is the number of materials in the model

‘numgrp’ is the number of energy groups

‘nquad’ is the number of quadrature set used in the model. In this example, only
one quadrature is uniformly used for every coarse mesh.

‘tquad’ is the type of quadrature sets. The number of entries equals to ‘nquad’.
Two types of quadrature set are available. Type 0 is the level symmetric quadrature set.
Type 1 is the Pn-Tn quadrature set.

‘oquad’ is the order of the quadrature sets. The number of entries equals to ‘nquad’.

Another keyword available for this section, but not included in the example, is
‘splitq’, which is used to specify ordinate splitting parameters.

4.1.2 Geometry Parameters

Some model geometry parameters and coarse mesh properties are defined in this
section

This section is marked by ‘#1’.

#1 /Section 1 : Geometry setup
/acceptable keywords: dcpara, xcmbnd, ycmbnd, zcmbnd, cmxfin, cmyfin, cmzfin,
cmsolv,cmdiff,cmquad
/ xcmbnd, ycmbnd, zcmbnd: x,y,z coarse mesh boundaries, NumOfEntry=ncmesh+1
/ cmxfin, cmyfin, cmzfin: fine mesh number along x,y,z for each coarse mesh,
NumOfEntry=TotNumOfCM
/ cmsolv: solver ID for each corase mesh, 0=Sn, 1=Characteristics
/ cmdiff: Differencing Scheme ID for each corase mesh, 1=DD with fixup, 2=DTW
/ cmquad: Quadrature ID for each coarse mesh, available values=1,2,... or nquad

xcmbnd= 0.00000E+00 5.00000E-02 9.50000E-01 1.00000E+00
ycmbnd= 0.00000E+00 5.00000E-02 9.50000E-01 1.00000E+00
zcmbnd= 0.00000E+00 2.50000E-01 4.75000E+00 5.00000E+00
cmxfin=6 18 2R6 18 2R6 18 2R6 18 2R6 18 2R6 18 2R6 18 2R6 18 2R6 18 6
cmyfin=3R6 3R18 6R6 3R18 6R6 3R18 3R6
cmzfin=9R6 9R72 9R6
cmsolv=27R0
cmdiff=27R1
cmquad=27R1

49

‘xcmbnd’ specifies the coarse mesh boundary positions along x axis. The number
of entries equals to the number of coarse mesh along x axis (defined in #0 section by
‘ncmesh’) plus one. The unit of entries is centimeter

‘ycmbnd’ specifies the coarse mesh boundary positions along y axis. The number
of entries equals to the number of coarse mesh along y axis (defined in #0 section by
‘ncmesh’) plus one.

‘zcmbnd’ specifies the coarse mesh boundary positions along y axis. The number
of entries equals to the number of coarse mesh along z axis (defined in #0 section by
‘ncmesh’) plus one.

‘cmxfin’ specifies number of fine meshes along x for all the coarse meshes. The
number of entries equals to the number of coarse meshes. Coarse meshes are ordered in a
way similar to storing a 3-dimension array in FORTRAN. The 3 dimensions are x, y and
z. For example, for a coarse mesh array cm(3,3,3), the first coarse mesh is cm(1,1,1), the
second one is cm(2,1,1), and so on. Note that FIDO characters ‘R’ is used in this example.
‘mRn’ means ‘repeat number n for m times’. If a ray-tracing solver is assigned to a coarse
mesh, the fine-meshing is built only on the coarse mesh boundaries. See Section 2.6 for
details.

‘cmyfin’ specifies number of fine meshes along y axis for all coarse meshes.

‘cmzfin’ specifies number of fine meshes along z axis for all coarse meshes.

‘cmsolv’ specifies the solver for each coarse meshes. Currently two solvers are
available: Solver 0 is the Sn solver, and Solver 1 is the ray-tracing solver.

‘cmdiff’ specifies the differencing scheme used for each coarse mesh. Currently
two types of differencing scheme are available. Type 1 is zero-fixed-up diamond, and
Type 2 is Directional Theta Weighted.

‘cmquad’ specifies the quadrature set used for each coarse mesh. Quadrature sets
are numbered from 1 to ‘nquad’. Each coarse mesh is assigned a quadrature set ID.

4.1.3 Material Distribution

This section, marked by ‘#2’, specifies the material distribution for each coarse
mesh. Each material is assigned a material ID from 1 to ‘nummat’ according to the order
of its appearance in the cross section data file.

50

#2 /Section 2 : Fine mesh mat. number
/ cmmatn=CM#, mat # for each fine mesh in this CM
cmmatn=1
216R3
cmmatn=2
648R1
cmmatn=3
216R1
cmmatn=4
648R1
cmmatn=5
1944R1
cmmatn=6
648R1
cmmatn=7
216R1
cmmatn=8
648R1
cmmatn=9
216R1
cmmatn=10
2592R1
cmmatn=11
7776R1
cmmatn=12
2592R1
cmmatn=13
7776R1
cmmatn=14
23328R2
cmmatn=15
7776R1
cmmatn=16
2592R1
cmmatn=17
7776R1
cmmatn=18
2592R1
cmmatn=19
216R1
cmmatn=20
648R1
cmmatn=21
216R1
cmmatn=22
648R1
cmmatn=23
1944R1
cmmatn=24
648R1
cmmatn=25
216R1
cmmatn=26
648R1
cmmatn=27
216R1

51

The first entry of ‘cmmatn’ is the coarse mesh number, followed by a sequence of
material IDs for each fine mesh (Sn solver) or region (ray-tracing solver) in this coarse
mesh. If a ray-tracing solver is assigned a coarse mesh, only one material region is
allowed currently. The ordering of fine meshes in a coarse mesh follows the same
convention as the coarse mesh ordering. For a coarse mesh with 6x6x6 fine meshes, the
material IDs for each fine mesh will be stored in a three dimensional array: fm(6,6,6),
where fm(1,1,1) will be the first fine mesh, fm(2,1,1) will be the second, and so on.

Another keyword available in this section is ‘fmsize’. Similar to ‘cmmatn’, the
first entry for ‘fmsize’ is the coarse mesh number, followed by a sequence of entries of
fine mesh size along x axis, then a sequence of entries of fine mesh size along y axis, then
along z axis. This keyword is optional and used to specify non-uniform fine size along an
axis. If this keyword is present, fine mesh size is uniform along any axis.

4.1.4 Source Distribution

This section, marked by ‘#3’, specifies the source distribution for any coarse mesh,
where a source is present.

‘srcloc’ specifies the coarse meshes where a fixed source is present. The number of

entries equals to ‘numsrc’ defined in Section 0.

‘srcmag’ specifies the source magnitude for each source. The number of entries
equals to ‘numsrc’.

‘srcspm’ specifies the source spectrum. The number of entries equals to ‘numsrc’
multiplied by ‘numgrp’.

‘srcdis’ specifies the source distribution in a coarse mesh. Similar to ‘cmmatn’, the
first entry is source ID number, followed by a sequence of source density for each fine
mesh. For example, srcmag*srcdis(3,3,3)*srcspm(1) is the source density for fine
mesh(3,3,3) and for Group 1. Currently, fixed sources can only be defined in a Sn solver
coarse mesh.

#3 /Section 3 : src distribution
/acceptable keywords: srcloc, srcmag, srcspm, srcdis (multi), keffin
/ srcloc: source location (CM number where source located), NumOfEntry=numsrc
/ srcmag: source strength (srcmag*srcdis=src density in that fm, #/cm3-sec),
 / NumOfEntry=numsrc
/ srcspm: source spectrum (srcmag*srcdis*srcspm=src density for a group),
NumOfEntry=numsrc*numgrp
/ srcdis: source spatial distribution srcdis=Src#, FineMeshDist
/ keffin: initial Keff guess, NumOfEntry=1, (more entries reserved for future Keff accelaration

srcloc=1
srcmag=2.16000E+02
srcspm=1.000E+00
srcdis=1
216R4.62963E-03

52

Another keyword, ‘keffin’, is to specify the initial k-effective. If ‘keffin’ is present,
the above keywords are ineffective.

4.1.5 Cross Section Parameter

This section, marked by ‘#5’, specifies the cross section data parameters.

‘xsname’ specifies the cross section data file name. Currently, TITAN uses an

ASCII row format xs data file, same as the format used by PENTRAN (type 0 and 1).
The following is a sample template for a 3-group library with down-scattering only.

For every Pn order of each material, a data section is used. Sections are separated

by comment line(s). The number of comment lines between sections is specified by
keyword ‘numcmt’. The number of rows in each section equals to the number of group.
For a P0 section, the first three columns are macro absorption cross section,
nu*sigma_fission, and total cross section. For the higher Pn order data, the first three
columns are not used, but they should be filled with zeros. The rest of the columns are the
scattering matrix. For downscattering only data, the group self scattering is located in
Column 4.

The following is a sample template for a 3-group library with upscattering.

/material 1 P0
/sig-a vsig-f sig-t sig-s scattering matrix
 1->1
 2->2 1->2
 3->3 2->3 1->3
 /material 1 P1
/sig-a vsig-f sig-t sig-s scattering matrix
 1->1
 2->2 1->2
 3->3 2->3 1->3

…….

#4 /Section 4 : xs data
/acceptable keywords: xsname, xstype, numcmt, xstihm, xstihs,xstiht, legord, legoxs,xstchi
/ xsname: cross section file name (charater entry)
/ xstype: 0=(2l+1) is not pre-multiplied; 1=(2l+1) pre-multiplied
/ numcmt: number of comment lines in between material xs block
/ xstihm: xs table total length, (SigmaTot@Column 3 always
/ xstihm=3+numgrp: SigmaSelfScatter@4 , downscattering only
/ xstihm=3+(2*numgrp-1): SigmaSelfScatter@(3+numgrp) , upperscattering

xsname=ps.xs
legord=0 legoxs=0
xstype=1
xstihm=4
xstchi=3R1.0000E+00
numcmt=1

53

For upscattering xs data, the group self-scattering xs is located in column 3+

‘numgrp’.

‘legord’ specifies the transport calculation Pn order, and ‘legoxs’ specifies the Pn
order of the cross section file. ‘legord’ should not be greater than ‘legoxs’.

‘xstype’ specifies the xs type. In a Type 0 xs file, (2l+1) is not factored in the
scattering matrix for Pn order greater than 0 sections, while in a Type 1 xs file, (2l+1) is
pre-multiplied.

‘xstihm’ specifies the total number of columns in the xs file. TITAN uses this entry
to decide along with ‘numgrp’ to decide if ‘upscattering’ data is present in the xs file.

‘xstiht’ and ‘xstihs’ are optional, and used to specify the column number of the
total xs and the self-scattering xs.

‘xstchi’ specifies the fission chi data. The number of entries equals to ‘numgrp’
multiplied by ‘nummat’.

‘numcmt’ specifies the number of comment lines between sections in the xs file.

4.1.6 Boundary Condition

This section, marked by ‘#5’, specifies the boundary conditions and some iteration
control parameters.

#5 /Section 5 : boundary cond. and tol.
/acceptable keywords: tolinn,tolout,maxinn,maxout,xminus,xpluss,yminus,ypluss,zminus,zpluss
/ tolinn: inner iteration (within-group) tolerance, negative value: adjustable for keff loop
/ tolout: outer iteration (keff loop) tolerance, negative value: adjustable for keff loop
/ maxinn: maxium inner iteration number, negative value: adjustable for keff loop
/ maxout: maxium outer iteration number, negative value: adjustable for keff loop
/ xminus,xpluss,yminus,ypluss,zminus,zpluss : Boundary conditions at -x,+x, -y,+y, -z,+z
/ =0: vaccum; =1 albedos for each group: reflective
xminus=0
xpluss=0
yminus=0
ypluss=0
zminus=0
zpluss=0
tolinn= 1.00000E-03
tolout= 1.00000E-05
maxout=10
maxinn=150

/material 1 P0
/sig-a vsig-f sig-t sig-s scattering matrix
 3->1 2->1 1->1
 3->2 2->2 1->2
 3->3 2->3 1->3

…….

54

Two boundary conditions are supported: vacuum and reflective (albedo) on the six
surfaces of a problem model.

‘xminus’ specifies the boundary condition on the ‘x-‘ surface. ‘xminus=0’
specifies a vacuum boundary, and ‘xminus=1’ specifies a reflective boundary, followed
by a sequence of albedos for each group.

‘xpluss’, ‘yminus’, ‘ypluss’, ‘zminus’, and ‘zpluss’ are the boundary conditions for
the other five surfaces.

‘tolinn’ is inner iteration (within-group) tolerance, and ‘tolout’ is outer iteration (k-
effective) tolerance

‘maxout’ is the limit of outer iteration number, and ‘maxinn’ is the limit of inner
iteration number.

4.1.7 SPECT Section

This section, marked by ‘#10’, is optional, and is used for simulation of SPECT
projection images.

‘numang’ specifies the number of projection angles.

;iniang’ is the rotation starting angle in the unit of degree.

‘endang’ is the rotation end angle in the unit of degree. The interval between
‘iniang’ and ‘endang’ will be uniformly divided into ‘numang’ angles.

‘vexaxs’ is a vector to specify the rotation axis.

 ‘posaxs’ is the origin of ‘vexaxs’ vector

‘radius’ is the rotation radius

#10 /Section 10 (Optional) : SPECT
/acceptable keywords: numang,iniang,endang, vecaxs, posaxs, radius, sptcir,detsiz
/ numang: number of projection angles
/ iniang, endang: rotation starting and endding angles in degree
/ vecaxs: rotation axis vector, NumOfEntry=3
/ posaxs: position of rotation vector, NumOfEntry=3
/ radius: rotation radius
/ sptcir: circular splitting for collimators
/ =splitting order(num of dir on one circle), number of circles, collimator angle
/ detsiz: detector size along x and y, in cm and pixels
/ =x-size(cm), y-size(cm), #OfPix along x, #ofPix along y

numang=180
iniang=-9.00000E+01
endang= 2.70000E+02
vecaxs= 0.00000E+00 0.00000E+00 1.00000E+00
posaxs= 2.00000E+01 2.00000E+01 2.00000E+01
radius= 3.00000E+01
sptcir=3 1 1.15350E-02
detsiz= 4.00000E+01 4.00000E+01 128 128

55

‘sptcir’ is optional, and used to specify the circular ordinate splitting parameters.
There are three entries for this keyword. The first entry is the number of directions on one
circle; the second entry is the number of circles. The third entry is the radius of the
outermost circle in ‘radian’, and it can be interpreted as the collimator acceptance angle.
For details of SPECT simulation, see Ref. 4

This section is designed for SPECT simulation, but it basically asks TITAN to
calculate angular fluxes on the model boundary for any given directions. Therefore, it can
be applied to any problem as if to ‘take pictures’ of the model from any angle.

4.2 Output Files
The following table lists the main output files of TITAN.

File name File Description

read.log Input processing log

prbname_solver.log Transport calculation log

Prbname_mix.plt TECPLOT binary data file, contains all the material, source and
calculated flux distributions

Prbname_mix.mcr TECPLOT macro file, used in TECPLOT to generate various
plots

Prbname_quad.dat ASCII file, quadrature set information

Most of ASICC output files are self-explained. By default, TITAN only output the
scalar flux distribution for all groups into a TECPLOT binary data file. TECPLOT is
used to open the binary data file, and make various plots of the calculated results. If
TECPLOT is not available, users can use ‘-flx’ option to dump the fluxes into a series of
ASCII file, named prbname<grp#>.flx. Users can use their preferred utility software to
plot the data in these ASCII files. PENMSHXP also can be used to post-processing
the .flx files. Users can also use ‘-d’ option in the command line to dump all the flux
moments into a binary file. This binary file can be used in a continuous run with the ‘-c’
command line option.

4.3 Command Line Options
TITAN can take a number of command options as listed in following table

Option Arguments Description

-i Folder name Specifies the input deck and xs data file directory,
default is the current directory

-n Input deck file name Specifies input deck file name, default is titan.inp

56

-h N/A Displays a ‘help’ screen

-adj N/A Adjoint calculation

-flx N/A Outputs .flx files (scalar flux distribution)

-d N/A Dumps the flux binary in a binary file named
‘prbname.mnt’

-c N/A Specifies a continuous run, ‘prbname.mnt’ should be
present in the current directory.

‘-adj’ option specifies an adjoint calculation. TITAN automatically flips multi-
group xs data and transposes the scattering matrix. But it is users’ responsibility to
reverse the source spectrum specified in the keyword of ‘srcspc’. And users should aware
that the calculated group fluxes are flipped as well. i.e. The last group flux actually is the
first group flux. TITAN is designed this way to increase the users’ awareness of an
adjoint calculation. Users can use PENMSHXP to flip the flux back into the right order.

57

APPENDIX A – Scattering Kernel in Linear Boltzmann Equation

Introduction

In the discretized form of the linear Boltzmann equation (Eq. 2-1), the scattering
kernel is the most complicated term. In this appendix, we will prove the following
formulation:

)]}sin()()cos()([

)(
)!(
)!(2)()(){()12(

)'ˆ,',()ˆ'ˆ,',('ˆ'

,',,',

1' 1 1
,',',

4
0

ϕφϕφ

μφμσ

ψσ
π

krkr

P
kl
klrPrl

ErEErddE

k
lgS

k
lgC

G

g l

l

k

k
llgllggs

s

rr

rr

rr

+

⋅
+
−

++

=ΩΩ→Ω→Ω

∑∑ ∑

∫∫

=

∞

= =
→

∞

 (A-1)

In Eq. A-1, the discretization in energy domain can be easily separated with the
discretization in the angular domain. The energy and spatial dependency of the scattering
source on the left hand side is represented by the flux moment terms ()(,' rk

lg
rφ ,)(,', rk

lgC
rφ

and)(,', rk
lgS
rφ) on the right hand side. Since the ∑∫

=

∞
→

G

g

dE
1'

0
 ' conversion can be achieved

straightforwardly by the multigroup approximation, here our main focus is on the

conversion of ∑∫
∞

=

→Ω
1'4

 'ˆd
lπ

. For simplicity, we drop the energy group index (g’ and g)

and spatial dependency (rr) in the flux moment terms and the cross section moment term.
Furthermore, instead of an infinitive Legendre expansion order, we assume a maxim
expansion order of L. With above simplifications, we can rewrite the formulation to be
proved:

)]}sin()cos([)(

)!(
)!(2)({)12(

)'ˆ()ˆ'ˆ('ˆ

,,
1 1

,

4

ϕφϕφμφμσ

ψσ
π

kkP
kl
klPl

d

k
lS

k
lC

L

l

l

k

k
lllls

s

+
+
−

++

≈ΩΩ→ΩΩ

∑ ∑

∫

= =

 (A-2)

From now on, we also use the following denotations:

),(),(ˆ ϕμϕθ →→Ω , and)','()','('ˆ ϕμϕθ →→Ω (A-3)

Where θ is the polar angle with x axis, φ is azimuthal angle on the y-z plane, and
)cos(θμ = ,)'cos(' θμ = . The integration over the unit sphere becomes

πμϕ
π

π

4'ˆ 2

0

1

1
4

==Ω ∫ ∫∫
+

−
ddd . In some references, for simplicity one can also use

58

1
22

'ˆ 2

0

1

1
4

==Ω ∫ ∫∫
+

−

π

π

μ
π
ϕ ddd . However, we found it is not necessary to make such

assumption, and it could cause some confusion in the spherical harmonic expansion. So
here we still respect the mathematical fact that the overall solid angle is 4π. Note that
with or without this assumption, the formulation of Eq. A-2 should remain the same.

In order to prove Eq. A-2, we need to expand the angular flux and the cross section into a
series of Legendre polynomials in the angular domain, respectively. In this appendix, we
provide such an expansion for both the angular flux and cross section. By substitute the
two expansion series into the left hand of Eq. A-1, we can evaluate the new terms, and
finally prove the scattering kernel formulation.

Spherical Harmonic Expansion of the Angular Flux

In this section, we also demonstrate how and why the cosine and sine flux
moments are defined. A smooth function defined on the surface of a unit sphere, such as
the angular flux)','()'ˆ(ϕμψψ =Ω , can be expanded by the spherical harmonic function.

∑ ∑
∞

= −=

==Ω
0

)','()','()'ˆ(
n

n

nm

m
n

m
n Ya ϕμϕμψψ (A-4)

The general form of the spherical harmonic function)','(ϕμm
nY is defined by:

')'(
)!(
)!(

4
)12()','(ϕμ

π
ϕμ imm

n
m

n eP
mn
mnnY ⋅⋅

+
−

⋅
+

= (A-5)

Where)'(μm
nP is the associated Legendre polynomial. The coefficient m

na is given by:

ϕπ

π

μ
π

ϕμψμϕ

ϕμϕμψμϕ

imm
n

m
n

m
n

eP
mn
mnndd

Ydda

−+

−

+

−

⋅⋅
+
−

⋅
+

=

=

∫ ∫

∫ ∫

)(
)!(
)!(

4
)12() ,(

),() ,(

2

0

1

1

2

0

1

1

 (A-6)

Where),(ϕμm
nY is the complex conjugate of),(ϕμm

nY .

The angular flux expansion defined by Eq. A-4 should be a real value. So we expect the
imaginary part of Eq. A-4 is zero. In order to prove this, we rewrite Eq. A-4 as following:

)]}','()','([)','({)','()','(
0 0 1

00 ϕμϕμϕμϕμϕμψ m
n

m
n

n n

n

m

m
n

m
nnn

n

nm

m
n

m
n YaYaYaYa −−

∞

=

∞

= =−=

++==∑ ∑ ∑∑

 (A-7)

59

Based on Eq. A.5, we have:

)'(
4

12)','(0 μ
π

ϕμ nn PnY +
= (A-8)

By applying the following identity of the spherical harmonic function,

)','()1()','(ϕμϕμ m
n

mm
n YY −=− , (A-9)

The coefficient m
na− can be evaluated as:

m
n

m

imm
n

imm
n

imm
n

imm
n

m
n

m
n

a

ePdd
mn
mnn

ePdd
mn
mnn

mn
mn

eP
mn
mndd

mn
mnn

eP
mn
mnndd

Ydda

)1(

)() ,(
)!(
)!(

4
)12((-1)

)() ,(
)!(
)!(

4
)12(

)!(
)!((-1)

)(
)!(
)!((-1)) ,(

)!(
)!(

4
)12(

)(
)!(
)!(

4
)12() ,(

),() ,(

2

0

1

1

m

2

0

1

1

m

2

0

1

1

m

2

0

1

1

2

0

1

1

−=

⋅
+
−

⋅
+

⋅=

⋅
−
+

⋅
+

⋅
+
−

⋅=

⋅
+
−

⋅
−
+

⋅
+

=

⋅⋅
−
+

⋅
+

⋅=

=

−+

−

+

−

+

−

+

−

−

−+

−

−

∫ ∫

∫ ∫

∫ ∫

∫ ∫

∫ ∫

ϕπ

ϕπ

ϕπ

ϕπ

π

μϕμψμϕ
π

μϕμψμϕ
π

μϕμψμϕ
π

μ
π

ϕμψμϕ

ϕμϕμψμϕ

 (A-10)

Note in Eq. A-10, we also apply the following identity of the associated Legendre
polynomial.49

)(
)!(
)!((-1))(m μμ m

n
m

n P
mn
mnP

+
−

=− (A-11)

According Eqs. A-9 and A-10, the last term in Eq. A-7 can be rewritten as:

)','(()','()','()1()1()','(ϕμϕμϕμϕμ m
n

m
n

m
n

m
n

m
n

mm
n

mm
n

m
n YaYaYaYa =⋅=−⋅−=−− (A-12)

We substitute Eq. A-12 back to Eq. A-7,

∑ ∑

∑ ∑

∑ ∑ ∑∑

∞

= =

∞

= =

−−
∞

=

∞

= =−=

+=

++=

++==

0 1

00

0 1

00

0 0 1

00

})]','(Re[2)','({

}])','(()','([)','({

)]}','()','([)','({)','()','(

n

n

m

m
n

m
nnn

n

n

m

m
n

m
n

m
n

m
nnn

m
n

m
n

n n

n

m

m
n

m
nnn

n

nm

m
n

m
n

YaYa

YaYaYa

YaYaYaYa

ϕμϕμ

ϕμϕμϕμ

ϕμϕμϕμϕμϕμψ

 (A-13)

60

Here we denote the real part of)','(ϕμm
n

m
n Ya as)]','(Re[ϕμm

n
m
n Ya . As we expected, the

angular flux is always a real value according Eq. A-13. Now we can further calculate the
two terms in Eq. A-13 based on Eqs. A-5 and A-6. The second term is:

)sin()() ,()'sin()'(
)!(
)!(

4
)12(

)cos()() ,()'cos()'(
)!(
)!(

4
)12(

))}]'sin()')(cos('(
)!(
)!(

4
)12({

))}sin()(cos()(
)!(
)!(

4
)12() ,(Re[{

)]','(Re[

2

0

1

1

2

0

1

1

2

0

1

1

ϕμϕμψμϕϕμ
π

ϕμϕμψμϕϕμ
π

ϕϕμ
π

ϕϕμ
π

ϕμψμϕ

ϕμ

π

π

π

mPddmP
mn
mnn

mPddmP
mn
mnn

mimP
mn
mnn

mimP
mn
mnndd

Ya

m
n

m
n

m
n

m
n

m
n

m
n

m
n

m
n

⋅⋅
+
−

⋅
+

+⋅⋅
+
−

⋅
+

=

+⋅
+
−

⋅
+

⋅−⋅⋅
+
−

⋅
+

=

∫ ∫

∫ ∫

∫ ∫

+

−

+

−

+

−

 (A-14)

And the first term is:

)() ,()'(
4

)12(

)}'(
4

12{)}(
4

)12() ,({)','(

2

0

1

1

2

0

1

1

00

μϕμψμϕμ
π

μ
π

μ
π

ϕμψμϕϕμ

π

π

nn

nnnn

PddPn

PnPnddYa

⋅
+

=

+
⋅⋅

+
=

∫ ∫

∫ ∫
+

−

+

−
 (A-15)

If we define the regular flux moment, cosine moment and sine moment as follows.

)() ,(
4
1 2

0

1

1
μϕμψμϕ

π
φ

π

nn Pdd ⋅= ∫ ∫
+

−
, (A-16)

)cos()() ,(
4
1 2

0

1

1, ϕμϕμψμϕ
π

φ
π

mPdd m
n

m
nC ⋅⋅= ∫ ∫

+

−
, (A-17)

)sin()() ,(
4
1 2

0

1

1, ϕμϕμψμϕ
π

φ
π

mPdd m
n

m
nS ⋅⋅= ∫ ∫

+

−
, (A-18)

We can rewrite Eqs. A-14 and A-15 as follows.

])'sin()'()'cos()'([
)!(
)!()12()]','(Re[,,

m
nS

m
n

m
nC

m
n

m
n

m
n mPmP

mn
mnnYa φϕμφϕμϕμ +

+
−

⋅+= (A-19)

nnnn PnYa φμϕμ)'()12()','(00 += (A-20)

By substituting Eqs. A-19 and A-20 into Eq. A-13, finally we derive the expansion
formulation for the angular flux.

61

}])'sin()'()'cos()'([
)!(
)!(2)'(){12(

})]','(Re[2)','({)','(

0
,,

1

0 1

00

∑ ∑

∑ ∑
∞

= =

∞

= =

+
+
−

++=

+=

n

m
nS

m
n

m
nC

m
n

n

m
nn

n

n

m

m
n

m
nnn

mPmP
mn
mnPn

YaYa

φϕμφϕμφμ

ϕμϕμϕμψ
 (A-21)

One may notice that Eq. A-21 looks similar to Eq. A-4, which is the formulation
we need to prove. However, further derivations are still required to reach Eq. A-4. After
the integration, 'μ and 'ϕ disappear on the right hand side of Eq. A-4. And only μ and ϕ
dependencies are left. At this point, Eq. A-21 is only a function of 'μ and 'ϕ . Here we
intentionally use n and m as the index, so that we can distinguish them with l and k,
which we will use in the next section while expanding the cross section term.

The flux moment formulations, Eqs. A-16 to A-18, are equivalent to Eqs. 2-2 to 2-
4 we discussed in Chapter 2. Note a 4π factor is used in these formulations.

Scattering Cross Section Expansion and the Spherical Harmonic Addition Theorem

The cross section term in Eq. A-2 can be written as follows.

)()ˆ'ˆ()ˆ'ˆ(0μσσσ sss =Ω⋅Ω=Ω→Ω (A-22)

Since the cross section only depends on the scattering angle. With the notations in Eq. A-
3, we can derive the formulation for Ω⋅Ω= ˆ'ˆ

0μ .

kji
rrr

)'sin()'sin()'cos()'sin()'cos('ˆ ϕθϕθθ ++=Ω (A-23)

kji
rrr

)sin()sin()cos()sin()cos(ˆ ϕθϕθθ ++=Ω (A-24)

)'cos()'sin()sin()'cos()cos(ˆ'ˆ
0 ϕϕθθθθμ −+=Ω⋅Ω= (A-25)

With Eq. A-25, we can apply the spherical harmonic addition theorem.

∑
=

+
+
−

+=
l

k

k
l

k
llll kkkkPP

kl
kluPuPP

1
0)]'sin()sin()'cos())[cos('()(

)!(
)!(2)'()()(ϕϕϕϕμμμ (A-26)

Now we can expand Eq. A-22 with the Legendre polynomial.

)]}'sin()sin()'cos()[cos(

)'()(
)!(
)!(2)'()({

4
12

)(
4

12)(

0 1
,

0
0,0

ϕϕϕϕ

μμσ
π

μσ
π

μσ

kkkk

PP
kl
kluPuPl

Pl

l

l

k

k
l

k
lllls

l
llss

+

⋅
+
−

+
+

=

+
=

∑ ∑

∑
∞

= =

∞

=

 (A-27)

62

Note we use the 4π factor in Eq. A-27, because usually we assume 0,sσ is the total

scattering cross section. So in case of isotropic scattering, the differential cross section

becomes
π
σμσ
4

)(0
s

s = .

Formulation of the Scattering Kernel

So far we have expanded the angular flux with the spherical harmonic function,
and the scattering cross section with the Legendre polynomial. In this section, we
multiply the two terms together and complete the angular integration. Eventually Eq. A-2
is derived.

We begin with rewriting the two expansion formulations (Eqs. A-21 and A-27) and
limiting the expansion order to L.

}])'sin()')[cos('(
)!(
)!(2)'(){12(

)','(

0
,,

1
∑ ∑
= =

+
+
−

++

=
L

n

m
nS

m
nC

m
n

n

m
nn mmP

mn
mnPn φϕφϕμφμ

ϕμψ
 (A-28)

})]'sin()sin()'cos())[cos('()(
)!(
)!(2

)'()({
4

12)(

1

0
,0

∑

∑

=

=

+
+
−

+
+

=

l

k

k
l

k
l

L

l
lllss

kkkkPP
kl
kl

uPuPl

ϕϕϕϕμμ

σ
π

μσ
 (A-29)

When we evaluate ∫ ∫
+

−
⋅⋅

π
μμσϕμψμϕ

2

0

1

1
)'()','('' sdd using Eqs. A-28 and A-29, all

the μ and φ terms can be moved out the integration, and obviously a lot of multiplication
terms will appear. Most of the terms become zero. Among the zero terms, some of them
are erased by the orthogonal property of Legendre polynomials, others are scratched off
by the facts that:

∫ =
π

ϕϕ
2

0
0)'cos(' md and ∫ =

π
ϕϕ

2

0
0)'sin(' md for m=1, 2… (A-30)

We will identify these terms step by step. Here, we refer to the term nnP φμ)'(in

Eq. A-28, and the term)'()(uPuP ll in Eq. A-29 as ‘the first part’ of the respective
equation, and the summation term over m or k in both equations as ‘the second part’.
Now we can apply the orthogonal property of the regular Legendre polynomials.

12
4

)(
12

2
2)()'()'('')(,,2

0

1

1 +
=

+
⋅=⋅∫ ∫

+

− l
P

l
PPPddP ln

ll
ln

nllnnl
πδ

φμ
δ

πφμμμμϕφμ
π

 (A-31)

63

Where
⎩
⎨
⎧ =

=
otherwise

nl
ln 0

 1
,δ

Therefore, all the first part multiplication terms become zeros except for those n=l.
Now we consider the first part of Eq. A-28 multiplied by the second part of Eq. A-29
(the summation term over m). One can observe that these terms become zeros because of
Eq. A-30. Similarly, the terms, acquired by multiplying the second part of Eq. A-28 with
the first part of Eq. A-29, become zeros as well.

So far the terms we have not covered are the multiplications of the second parts
from both Eqs. A-28 and A-29. A common mistake one might make is to assume

∫
+

−
⋅=

1

1 ,,)'()'(' mknl
m

n
k

l CuPPd δδμμ . The assumption is very convenient here. Unfortunately,

such strict orthogonal relationship for the associated Legendre polynomials can not hold
for arbitrary l, k, n, and m. However, a relaxed version is always true.49

nl
m

n
m

l ml
ml

l
PPd ,

1

1)!(
)!(

12
2)'()'(' δμμμ

−
+

⋅
+

=∫
+

−
 (A-32)

In order to apply Eq. A-32, we need to notice the facts that:

∫ ∫
⎩
⎨
⎧ =

==
π π π

ϕϕϕϕϕϕ
2

0

2

0 0

)'sin()'sin(')'cos()'cos('
otherwise

mk
kmdkmd m,k=1, 2… (A-33)

∫ ∫ ==
π π

ϕϕϕϕϕϕ
2

0

2

0
0)'cos()'sin(')'sin()'cos(' kmdkmd for m,k=1, 2… (A-34)

By using Eqs. A-33 and A-34, we are able to remove all the terms except the terms
of)'cos()'cos(ϕϕ mk and)'sin()'sin(ϕϕ mk with k=m. Then, we can apply Eq. A-32 on all
the remaining terms. In the end, we can conclude that only the terms with k=m and l=n
will survive among all the second part multiplication terms.

Based on the above explanations, we can write the scattering kernel with all the
remaining terms by combining Eqs. A-31 to A-34. Finally, we have proved Eq. A-2.

)]}sin()cos([)(
)!(
)!(2)({)12(

)]}sin()cos()[(
)!(
)!(

12
2)

)!(
)!([(4

12
4)({

4
)12(

)'ˆ()ˆ'ˆ('ˆ

,,
1 1

,

,,

1 1

2
,

2
4

ϕφϕφμφμσ

ϕφϕφμ

ππφμσ
π

ψσ
π

kkP
kl
klPl

kkP
kl
kl

lkl
kl

l
Pl

d

k
lS

k
lC

L

l

l

k

k
lllls

k
lS

k
lC

k
l

L

l

l

k
llls

s

+
+
−

++=

+

⋅⋅
−
+

⋅
+

⋅
+
−

+
+

⋅
+

≈

ΩΩ→ΩΩ

∑ ∑

∑ ∑

∫

= =

= =
 (A-35)

64

Summary

The energy dependency and its integration can be introduced back into Eq. A-35.
And we acquire the multigroup form of the scattering kernel. In the TITAN code, we
apply the scattering-in moment form by switching the summation over the group and
Legendre order (Eq. 4-1). The switching seems meaningless mathematically. However, it
can generate significant benefits in the coding practice. Further discussions on the
scattering-in moment form are already given in Chapter 4.

In Eq. A-35, the direction),(ϕμ , which is the particle moving direction after a
scattering reaction, is not required to be one of the directions in a quadrature set, although
this happens to be true in the sweep process with a regular quadrature set. Mathematically,

),(ϕμ can be an arbitrary direction in Eq. A-35. We take advantage of this fact in the
fictitious quadrature technique we developed in Chapter 6, and also the ordinate splitting
technique in Chapter 2. It is not evident to claim that the scattering source evaluated by
Eq. A-35 on regular quadrature directions has a higher accuracy than on an arbitrary
direction. Nevertheless, the flux moments are always calculated with a regular quadrature
set to conserve the integrations in Eqs. A-16 to A-18.

65

APPENDIX B - Numerical Quadrature on Unit Sphere Surface

Introduction

In the process of solving the linear Boltzmann equation, flux moments need to be
evaluated in order to calculate the angular-dependent scattering source term. Flux
moment (Eqs. 2-2 to 2-4), by its mathematical nature, is nothing but an integration of a
function defined on a unit sphere surface. The function is the angular flux multiplied by a
corresponding regular or associated Legendre polynomial. Flux moments become angular
independent after the integration over the surface of a unit sphere. The exact distribution
of the angular flux on the unit sphere is unknown. However, we can evaluate function
values of the angular flux by the sweep process at a given number of points (‘discrete
ordinates’) on the unit sphere. Positions and associated weights of these points are
prescribed by a quadrature set. Then, the flux moments can be simply calculated by a
summation of the function values multiplied the associated weights.

Quadrature is a simple but powerful numerical integration technique. For example,
a Gaussian quadrature with an order of N, can acquire the exact value of the integration
of any polynomial up to order of 2N-1 defined within [-1, +1]. In our case, the
integration domain is the surface of a unit sphere. Thereby, we need to build a quadrature
to evaluate a double integration. Mathematically, a good quadrature of a given order
always tends to conserve the integration to the highest order. However, the property of
symmetry of a quadrature generally plays a significant role in a physical problem. For
example, in a problem with reflective boundaries, we obviously hope all reflected
directions of a given direction are also in the quadrature set. Therefore, we often build a
quadrature on the balance between keeping symmetry and conserving higher order
integration. For example, the level-symmetric quadrature with an order of N can conserve
moments only up to the Nth order, but with an excellent symmetry property of rotation
invariance. The Legendre-Chebyshev quadrature can conserve moments up to the 2N-1,
but rotation invariance is slightly disturbed.

In this appendix, we prove that the Legendre-Chebyshev quadrature is the best
choice in regards to conserving higher moments. Through the discussion of the procedure,
hopefully we can cast some insights on how a quadrature is built on the balance of simple
mathematics and physics for transport calculations.

General Quadrature Theorem

The popular Gaussian quadrature is built on the orthogonal Legendre polynomial,
which is defined on [-1, +1] with a weighting function w(x)=1. In general, we can

66

consider }{ 0n |)(≥xnϕ as the orthogonal polynomials defined on (a, b) with a weighting
function of bxaxw <<≥ for 0)(. According to the orthogonality property, we have:

⎩
⎨
⎧

=
≠

=∫ nm
nm

dxxxxw
n

b

a mn γ
ϕϕ

0
)()()((B-1)

Where ∫=
b

a nn dxxxw 2)]()[(ϕγ . We also denote that LL+= n
nn xAx)(ϕ and

n

n
n A

A
a 1+= .

And the integral of a function f(x) can be represented by an n’th quadrature formula:

)()()()()(
1

,, fIxfwdxxfxwfI n

b

a

n

j
njnj∫ ∑

−

=≅= (B-2)

For a given number of nodes, we choose the node positions {xj,n} and weights {wj,n}
in hoping that we can conserve Eq. B-2 as accurate as possible for any f(x).
Mathematically, if we assume f(x) is a polynomial, this means that the positions and
weights of the nodes can hold the integration exactly as the true value to the highest order
of the polynomial. In this sense, the nodes and weights can by calculated with Theorem
B-1, which is the fundamental guide for building the Legendre-Chebyshev quadrature.

Theorem B-1:

For each 1≥n , there is unique numerical integration formula of degree of precision 2n-

1, Assuming f(x) is 2n times continuously differentiable on [a , b], the formula for In(f)

and its error is given by

∫ ∑
=

+=
b

a

n

j

n

n

n
jj f

nA
xfwdxxfxw

1

)2(
2)(

)!2(
)()()(η

γ
 (B-3)

For some ba <<η . The nodes {xj} are the zeros of)(xnϕ , and the weights {wj} are

given by:

, ..., nj
xx

aw
jnjn

nn
j 1

)()(' 1

=
−

=
+ϕϕ
γ (B-4)

Legendre-Chebyshev Quadrature on Unit Sphere

Theorem B-1 lays the foundation for building a quadrature set for one-dimensional
integration. In order to apply the theorem for a function defined on a unit sphere, we need

67

to separate the two-dimensional integration of the angular flux into two one-dimensional
integrations.

In general, we consider),(ϕμf is a real smooth function defined on a unit sphere
surface, where 11 , ≤≤− μμ , is the cosine of the polar angle, and πϕπϕ +≤≤- , is
the azimuthal angle. We need to estimate:

∫ ∫ ∫
+

−
=Ω=

π

π
ϕμϕμϕμ

4

1

1

2

0
),(),(fddfdI (B-5)

First we define a function of)(μg :

∫=
π

ϕμϕμ
2

0
),()(fdg (B-6)

∫ ∫
+

−
=Ω=

π

μμϕμ
4

1

1
)(),(gdfdI (B-7)

The integration defined by Eq. B-7 can be estimated by a Gaussian quadrature,
since the weighting function is 1)(=xw . Based on Theorem B-1, we choose the
quadrature nodes }{ iμ as the roots of the N’th Legendre polynomial.

0)(=iNP μ (B-8)

Note we usually choose N as an even integer, so that the roots are symmetrically
distributed on the axis. The weights }{ iw can be calculated by Eq. B-4. Next we need to

determine the function values of)}({ ig μ .)(ig μ itself is an integration over a unit circle
defined by Eq. B-6. And it can be estimated by another quadrature, in which we still
prefer that the quadrature nodes are symmetrically distributed on the four quadrant of a
unit circle. Thereby, we separate the integration defined by Eq. B-6 into two parts:

∫∫∫ +==
π

π

ππ
ϕμϕϕμϕϕμϕμ

2

0

2

0
),(),(),()(iiii fdfdfdg (B-9)

Now we can consider only the integration over the first half of the unit circle, since
nodes on the other half of the circle are decided by symmetry. We denote

),()(ϕμϕ ifg = and)cos(ϕη = . The first part of Eq. B-9 can be rewritten as:

∫∫∫∫
+

−

+

−
===

1

1 2

1

1 200
)(h

-1
))(arccos(g

-1
)(g),(η

η

ηη
η

ηϕϕϕμϕ
ππ dddfd i (B-10)

Note here
21

)arccos(
η

ηηϕ
−

−
==

ddd . And we denote))(arccos()(ηη gh = .

68

In Eq. B-10,
21

1)(
η

η
−

=w is the weighting function for Chebyshev polynomial

))arccos(cos()(xnxTn ⋅= . Thereby, we are required to choose the Chebyshev quadrature
to evaluate the integration defined by B-10, so that we can precisely estimate the
integration if)(ηh is a polynomial up to the order of 2n-1. Usually, we choose an even
integer for n, because we can keep the symmetry on the top half of the unit circle. Figure
B-1 shows the roots of T4(x) on the unit circle.

Figure B-1. Chebyshev roots (N =4) on a unit circle.

The x coordinates of Z1-Z4 are the roots of T4(x). For an even order Chebyshev
polynomial, Z1 and Z2 are symmetric to Z3 and Z4 respectively. Z5-Z8 are intentionally
selected to keep symmetry. As a result, Z1-Z8 are symmetrically distributed over the four
quadrants. Furthermore, the Chebyshev roots are uniformly located on the unit circle, and
they are equally weighted by Eq. B-4.

By combining Eqs. B-7 and B-10, the Legendre-Chebyshev quadrature can be built
on a unit sphere. However, some physical concerns on symmetry still need to be
addressed. Normally, we require the directions in one octant form a ‘triangle-shaped’
ordering as shown in Figure 2-8 in Chapter 2. And all directions in the other seven
octants are decided by symmetry. The ‘triangle-shaped’ distribution is required to keep
the property of ‘rotation invariance’. For example, in the level-symmetric quadrature,
number of directions per level increases by one from one level to the next. And the
choice of the polar axis (x, y, or z) does not affect the distribution of the directions

X

Y

Z1

Z2Z3

Z4

Z5

Z6 Z7

Z8

69

because the directions are perfectly symmetrical. In the Legendre-Chebyshev quadrature,
we cannot keep this ‘perfect symmetry’ because its priority is to conserve higher
moments over rotation invariance. However, we can still keep some ‘slightly disturbed
symmetry’ of rotation invariance by employing the same ‘triangle-shaped’ direction
ordering.

The procedure to build a Legendre-Chebyshev S10 quadrature in the first octant can
be explained as follows: We choose the five positive roots of P10(x) as the level positions.
There is only one direction on the top level. And its position on the circle is decided by
the positive root of T2(x). On the second level, the two positive roots of T4(x) become the
quadrature node positions. The third level node positions are chosen by the three roots of
T6(x), and so on. On the bottom level, five directions are to be defined, which are the
positive roots of T10(x). These five level nodes form a triangle-shaped distribution in the
first octant. The final layout of the nodes has a quite similar look as the level symmetry
quadrature of S10. Figure 2-10A shows the difference of direction distribution between
the level-symmetric and Legendre-Chebyshev quadrature with an order of 10.

Newton’s Method to Find Pn(x) Roots

In the Legendre-Chebyshev quadrature, the roots of Legendre and Chebyshev
polynomials are essential to locate the positions of the quadrature nodes. Chebyshev roots
are easy to find since they are uniformly distributed on the unit circle as shown in Figure
B-1.

πϕπ
n

i
n

ixxnxT iin 2
12

2
12cos 0))arccos(cos()(−

=⇒⎥⎦
⎤

⎢⎣
⎡ −

=⇒=⋅= (B-11)

For a Legendre polynomial f(x)=PN(x), we apply a variant of Newton’s method to find all
the positive zeros {xi} in an increasing order as follows.

Step 1: Set initial guess xg=0 for the first (smallest) positive root x1.

Step 2: For i=1, 2, … , N, repeat step 3-5, where N, an even integer, is the polynomial
rank.

Step 3: Use Newton’s method to find root xi.

Step 4: Set
)(

)()(
ixx

xfxf
−

= .

Step 5: Set initial guess xg= xi for next root xi+1.

Step 6: Stop

In Step 3 of the above algorithm, the polynomial f(x) and its derivative can be defined as
follows.

70

∏
−

=

−
= 1

1

)(

)()(i

m
m

N

xx

xPxf (B-12)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−
=

∑

∑
∏∏∏

−

=

−

=
−

=

−

=

−

=

1

1

1

1
1

1

1

1

1

1

1)()(
)(

)(

1

)(

)(

)(

1)(

)(

)()('

i

m iN

N

i

m i
i

m
i

N
i

m
i

N
i

m
i

N

xx
xfxf

xP
dx

xdP

xxxx

xP

xxdx
xdP

xx

xP
dx
dxf

 (B-13)

Then we can apply the following iterative formulation of Newton’s method to find root xi

1)()(

)(
)('
)(

1

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−=−=

∑
−

=

i

m i
iN

iN

iN
i

i

i
ii

xx
xP

dx
xdP

xPx
xf
xfxx (B-14)

In Eq. B-14,)(xPN and)(' xPN can be estimated by the recurrence relations of Legendre
polynomial defined in Eqs. B-15 and B-16.

0)()()12()()1(11 =++−+ −+ xnPxxPnxPn nnn (B-15)

)()1()()1()()()()1(11
'2 xPnxxPnxnPxnxPxPx nnnnn +− +−+=+−=− (B-16)

So far we have set up the layout of the directions on the unit sphere by finding roots of
Pn(x) and Tn(x). We will further discuss the node weights in the next section.

Positivity of Weights

Another physical concern is the positivity of the node weights. Level-symmetric
quadrature is limited to the order of 20, because negative weights occur beyond order 20.
In the Legendre-Chebyshev quadrature, the weight for node i is calculated by the product
of polar weight (level weight) and azimuthal weight.

TPi www ⋅= (B-17)

Both the polar weight wp and azimuthal weight wT are calculated by Eq. B-4 with
Legendre and Chebyshev polynomials, respectively. First we evaluate the terms in Eq. B-
4 for azimuthal weights by applying some Chebyshev polynomial properties.

πγ
2
1 and 2 2 n

11 ===⇒= +−

n

n
n

n
n A

A
aA (B-18)

71

)sin()1()(and ,
)sin(

)1()(1

1
'

i
i

in
i

i

in xTnxT ϕ
ϕ

−=
−

= +

+

 (B-19)

We can substitute Eqs. B-18 and B-19 into Eq. B-4.

)()(' 1 nxTxT

a
w

inin

nn
T

πγ
=

−
=

+

 (B-20)

So the Chebyshev nodes are equally weighted. In the TITAN code, we normalize the
azimuthal weights on the same level to one. So we simply use normalized weights.

n
wT

1
= , (B-21)

Where n is level number. Next we can evaluate the level weights by applying some
properties of Legendre polynomial given in Eq. B-22.

12
2 and

1
12

)!(2
)!2(

])!1[(2
)]1(2[

)!(2
)!2(

221
1

2 +
=

+
+

=⋅
+
+

==⇒= +
+

nn
n

n
n

n
n

A
A

a
n
nA nnn

n

n
nnn γ (B-22)

By substituting Eq. B-22 into Eq. B-4, and applying the recurrence property of Eq. B-16,
we can rewrite Eq. B-4 as follows.

2
1

2

2

11)]([)1(
)1(2

)()(')1(
2

)()(' in

i

inininin

nn
T xPn

x
xPxPnxPxP

aw
+++ +

−
=

+
−=

−
=

γ (B-23)

Note in deriving Eq. B-23, we also apply 0)(=in xP . Since 10 << ix , wT defined by Eq.
B-23 is positive definite. Therefore, unlike the level-symmetric quadrature, the Legendre-
Chebyshev quadrature weights are always positive. Furthermore, we can prove that the

sum of the weights 2
1

=∑
=

n

i
iw , because of the following identity of Legendre polynomial.

∑
= +

=
+

−n

i in

i

xPn
x

1
2

1
2

2

1
)]([)1(

1
 (B-24)

In the Legendre-Chebyshev quadrature, we always choose n as an even integer.
The roots and weights are symmetrical regarding to x=0. We can apply Eqs. B-17, B-21
and B-24 to calculate the total weight for all directions in the first octant.

11 2/

11

2/

11

2/

1

==== ∑∑∑∑∑ ∑
=====

N

n

P
n

n

k

N

n

P
n

n

k

T
k

i

N

n

P
ni w

n
wwww (B-25)

As the level-symmetric quadrature, all the directions in other octants are
determined by applying symmetry to the ones in the first octant. We can conclude that the
sum of the Legendre-Chebyshev quadrature weights in one octant is equal to one as in the
level-symmetric quadrature.

72

Conclusions

We have proved two very desirable properties of the Legendre-Chebyshev
quadrature for transport calculations. First, it can conserve integration up to 2N-1 order.
Second, the weights are always positive for any order of the quadrature. However, we do
lose some symmetry of rotation invariance. On the other hand, the level symmetry
quadrature keeps the perfect symmetry of rotation invariance at the cost of only Nth order
accuracy and an order limitation of 20. These two quadrature types reflect the trade-off
while pursuing mathematical accuracy and physical symmetry.

In the TITAN code, a quadrature set can be further biased by physical concerns.
We can apply the ordinate splitting technique (Chapter 2) on some directions with more
‘physical importance’. We also developed the fictitious quadrature technique (Chapter 5),
which is designed for calculating the angular fluxes in the directions with more ‘physical
interests’.

73

LIST OF REFERENCES

1. CE YI, “Hybrid Discrete Ordinates and Characteristics Method for Solving the Linear
Boltzmann Equation,” PhD Thesis, University of Florida (2007).

2. C. YI and A. HAGHIGHAT, “A Hybrid Block-Oriented Discrete Ordinates and
Characteristics Method Algorithm for Solving Linear Boltzmann Equation” Proc.
Int.Conf. M&C Monterey, CA (2007).

3. C. YI and A. HAGHIGHAT, “Accuracy of TITAN Based on a New OECD-NEA
Benchmark over a Range in Parameter Space”, Submitted and accepted to
International Topical Meeting on Mathematics & Computation Methods, and Reactor
Physics (2009)

4. C. YI and A. HAGHIGHAT, “Hybrid Discrete Ordinate and Ray-tracing with
Fictitious Quadrature for Simulation of SPECT”, Submitted and accepted to
International Topical Meeting on Mathematics & Computation Methods, and Reactor
Physics (2009)

5. C. Yi and A. HAGHIGHAT, “Parallel Performance of a Hybrid Discrete Ordinate
and Characteristics Algorithm,” AMERICAN NUCLEAR SOCIETY
TRANSACTIONS, VOL. 98 (2008).

6. C. YI and A. HAGHIGHAT “A 3-D Block-Oriented Hybrid Discrete Ordinates and
Characteristics Method” Submitted to Nuclear Science and Engineering (accepted for
publication) (2009)

7. E. E. LEWIS and W. F. MILLER, Computational Method of Neutron Transport, John
 Wiley & Sons, New York (1984).

8. B. G. CARLSON and K.D. LATHROP, “Discrete Ordinates Angular Quadrature of
the Neutron Transport Equation,” LA-3186, Los Alamos National Laboratory (1965).

9. J. R. ASKEW, “A Characteristics Formulation of the Neutron Transport Equation in
Complicated Geometries,” AEEW-M1108, United Kingdom Atomic Energy
Authority (UKAEA), Winfrith (1972).

10. M. D. BROUGH and C.T. CHUDLEY, “Characteristic Ray Solution of the Transport
Equation,” Advances in Nuclear Science and Technology Yearbook (1980).

11. G. E. SJODEN and A. HAGHIGHAT, “PENTRAN: Parallel Environment Neutral-
particle TRANsport SN in 3-D Cartesian Geometry - User Guide Version 9.30c,”
University of Florida (2004).

12. B. PETROVIC and A. HAGHIGHAT, “Analysis of Inherent Oscillations in
Multidimensional SN Solutions of the Neutron Transport Equation,” Nucl. Sci. Eng.,
124, 31 (1996).

13. A. M. KIRK, “On the Propagation of Rays in Discrete Ordinates,” Nucl. Sci. Eng.,
132, 155 (1999).

14. K. D. LATHROP, “Spatial Differencing of the Transport Equation: Positivity vs.
Accuracy,” J. Comput. Phys., 4, 475 (1969).

15. W. RHOADES and W. ENGLE, “A New Weighted Difference Formulation for
Discrete Ordinates Calculations,” Trans. Am. Nucl. Soc., 27, 776 (1977).

74

16. B. PETROVIC and A. HAGHIGHAT, “New Directional Theta-Weighted SN
Differencing Scheme,” Trans. Am. Nucl. Soc., 73, 195 (1995).

17. G. E. SJODEN and A. HAGHIGHAT, “The Exponential Directional Weighted
(EDW) Differencing Scheme in 3-D Cartesian Geometry,” Proc. Int. Conf. on
Mathematical Methods and Supercomputing for Nuclear Applications (M&C 1997),
Saratoga Springs, NY, American Nuclear Society (1997).

18. G. E. SJODEN, “An Efficient Exponential Directional Iterative Differencing Scheme
for 3-D SN Computations in XYZ Geometry,” Nucl. Sci. Eng., 155, 179 (2007).

19. B. G. CARLSON, “Transport Theory: Discrete Ordinates Quadrature over the Unit
Sphere,” LA-4554, Los Alamos National Laboratory (1970).

20. G. LONGONI and A. HAGHIGHAT, “Development of the Regional Angular
Refinement and Its Application to the CT-Scan Device,” Trans. Am. Nucl. Soc., 86,
246 (2002).

21. C. YI, “PENMSH XP manual: A Mesh Generator to Build PENTRAN Input Deck
with Compatibility to PENMSH,” University of Florida (2007).

