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Chapter 1 - Introduction  

TITAN is a deterministic radiation transport simulation code in 3-D Cartesian geometry. 
TITAN numerically solves the time-independent first order transport equation (Linear 
Boltzmann Equation) using a hybrid Discrete Ordinate (Sn) and Ray-tracing method (Refs. 
1-6).  

Two transport solvers, an Sn Solver and a ray-tracing solver, are integrated in the 
TITAN code. Both solvers work on the coarse mesh level in Cartesian geometry. Generally, 
a TITAN problem model contains more than one coarse mesh. This allows users to apply 
different solvers to different coarse mesh. This feature can be useful for problems containing 
a large region of low scattering medium. In such regions, the Sn method (Refs. 7-8) requires 
finer angular and spatial meshing and becomes less efficient. TITAN’s ray-tracing solver is 
more efficient to solve the transport equation in such regions. The ray-tracing solver is 
essentially a 3-D Method of Characteristics (Ref. 9-10) solver, only it applies to an individual 
coarse mesh, instead of the whole spatial domain. Currently the ray-solver applies only on 
coarse mesh with one material region, and the total cross-section of the material should be 
close to zero to qualify as ‘low scattering’ medium. For a multi-region regular coarse mesh, 
the Sn solver should be used.  

TITAN is originally designed to solve radiation transport problems for medical physics 
applications, where large air regions are very common. It has been applied on a series of 
SPECT (Single Photon Emission Computed Tomography) models to simulate the projection 
images (Ref. 2). TITAN can also be used in nuclear engineering application for both 
shielding and criticality calculations. It has been benchmarked on a number of OECD/NEA 
benchmark problems, including the C5G7 mox (Ref. 1), Kobayahsi (Ref. 6), and the 3-D 
parameter space (Ref. 3).  

 The code, about 20,000 lines at present, is written in FORTRAN 90/95 with some 
language extensions of object-oriented features (part of the FORTRAN 2003 standard). 
Object-oriented paradigm is heavily used in the code. Both the Sn solver and the ray-tracing 
solver are coarse-mesh-oriented. This allows users to apply an individual solver, quadrature 
set, meshing scheme, and etc. to a given coarse mesh. The subroutines in the code are 
organized in a kernel-layer structure. The main task for the kernel is to complete a transport 
sweep within a coarse mesh, in one direction of a quadrature set, and for one energy group. 
Outer layer subroutines complete the tasks, such as system transport sweep and source 
iteration loop, by calling the inner layer subroutines.    

TITAN is active in development. Some features of the code include: 

• Integrated SN and ray-tracing solvers. 

• Shared scattering source kernel allowing arbitrary order anisotropic scattering.   
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• Backward ray-tracing.  

• Block-oriented data structure allowing localized quadrature sets and solvers. 

• Layered code structure. 

• Level-symmetric and PN-TN quadrature sets.  

• Incorporation of three ordinate splitting techniques (rectangular, local PN-TN, and 
circular)  

• Fast and memory-efficient spatial and angular projections on the interfaces of coarse 
meshes by using sparse projection matrix. 

• ‘Frontline-style’ interface flux handling. 

• An efficient algorithm for calculation of the scattering source and the within-group 
scattering with a modified scattering kernel. 

• A binary I/O library to visualize and post-process data with TECPLOT.  

• Extra Sweep technique with the fictitious quadrature technique for calculations of 
angular fluxes along arbitrary directions. 

A parallel version using MPI is also available. Currently the parallel version only does 
angular decomposition. It uses the same input deck as the serial version. The number of cpu 
is specified in the ‘mpirun’ command line. TITAN will distribute the ‘angular sweep’ tasks 
evenly to the allocated processors.   
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Chapter 2 - Theory  

2.1 Multi-Block Framework Overview 
To numerically solve the LBE with a deterministic method, discretization schemes are 

required in the energy, angular and spatial domains. Once the discretization grid is built in 
the phase space, one can evaluate the angular flux on each node by sweeping the grid in a 
specific order repeatedly via an iteration scheme (e.g., the source iteration scheme) until 
solution convergence is achieved. 

The hybrid method is built on a multi-block spatial meshing scheme, which is also 
used in the PENTRAN code (Ref. 11 ). The meshing scheme divides the whole problem 
model into coarse meshes (blocks) in the Cartesian geometry. And each coarse mesh is 
further filled with uniform fine meshes or characteristic rays depending on which solver is 
assigned to the coarse mesh. Figure 2-1 shows the multi-block framework of the hybrid 
approach. 

 
Figure 2-1.  Coarse mesh/fine mesh meshing scheme. 

The multi-block framework leads to an important feature of the hybrid code: both the 
SN and characteristics solvers are coarse-mesh-oriented. They are designed to solve the 
transport equation on the scope of a coarse mesh. A coarse mesh can be considered as a 
relatively independent coding unit with its own spatial discretization grid (fine meshes or 
characteristic rays) and angular discretization grid (quadrature set). Users can assign either 
solver to each coarse mesh. 

In the following sections, we provide the formulations for the block-oriented SN and 
characteristics solvers, and demonstrate the two solvers on the multi-block framework. We 
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also discuss the angular quadrature sets used in the TITAN code along with the ordinate 
splitting technique. 

2.2 Discrete Ordinates Formulations  
Here, we apply the multigroup theory (Ref. 7) to discretize the LBE in the energy 

domain. 
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Where, μ ,η ,and ξ  are the x, y and z direction cosines for the discrete ordinates, θ ,ϕ  are the 
polar and azimuthal angles, respectively. (μ ,ϕ ) or (μ ,η ,ξ ) specifies a discrete ordinate, 
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And other variables are:  

gσ : total group macroscopic cross section 

gsg →'σ : thl  moment of the macroscopic differential scattering cross section from gg →' . 

gχ : group fission spectrum  
k0: criticality eigenvalue  
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fgυσ : group fission production  

),,,,( ϕμzyxS fix
g : external source on the position of (x,y,z) and in the direction of ),( ϕμ  

We can make several observations on Eq. 2-1. First, obviously it accomplishes the 
discretization in the energy domain by utilizing the multigroup theory. As a result, 

)ˆ,,( ΩErrψ  becomes ( , , , , )g x y zψ μ ϕ . Secondly in the angular domain, no further 

discretization is required, since we solve for the angular flux in a number of discrete 
directions of ( , ) 1,n n n Nμ ϕ = , where N is the total number of directions. The discrete 
directions are carefully chosen by the quadrature set so that we can conserve the integral 
quantities such as scalar fluxes. Thirdly, the most challenging term is the scattering term, in 
which we convert the integrations over energy and angular domain into numerical 
summations for energy groups and Legendre expansion terms. Derivations of the scattering 
kernel are given in Appendix A. It is important to note that in Eq. 2-1, the scattering kernel, 
as well as the fission term, does not explicitly depend on the angular flux, but on the flux 
moments. The relationships between the angular flux and the flux moments are defined by 
Eqs. 2-2 to 2-4.  Finally the streaming term becomes a differential term in Cartesian 
geometry. In order to numerically evaluate the differentials, differencing scheme is required 
in the SN method. 

2.3 Source Iteration Process 
Since the terms on the right hand side of Eq. 2-1, including scattering term, fission 

term and fix-source term, are not explicitly dependent on the angular flux, we can further 
simplify Eq. 2-1 by combining all the source terms into one source term.  

( ) ( , , , , ) ( , , ) ( , , , , ) ( , , , , )g g g gx y z x y z x y z Q x y z
x y z

μ η ξ ψ μ ϕ σ ψ μ ϕ μ ϕ∂ ∂ ∂
+ + + =

∂ ∂ ∂
   (2-5) 

where  or g scattering fission fixQ S S S= + . scatteringS , fissionS  and fixS  represent the three terms on the 

right hand side of Eq. 2-1 respectively. Eq. 2-5 can be viewed as a numerical iteration 
equation, which usually is called ‘source iteration’ scheme (SI).2 In this iteration process, gQ  

is calculated from previous iteration results. Therefore, we can solve Eq. 2-5 for the angular 
flux by taking gQ  as a constant. Flux moments can be evaluated by Eqs. 2-2 to 2-4 with the 

latest angular flux, then we can use the flux moments to update gQ  for the next iteration. 

This process is repeated until the 0’th flux moment is converged under some convergence 
criterion. The iteration process for each group (g) can be illustrated as follows: 

Step 1: Solve Eq. 2-5 for angular flux ( , , , , )g x y zψ μ ϕ . 

Step 2: Evaluate flux moments based on Eqs. 2-2 to 2-4. 

Step 3: Update the scattering source.  
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Step 4: Repeat the process from Step 1, until 
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In Step 1, gψ  is calculated for every fine mesh along a given direction, which is 

referred to as ‘one direction sweep’. After sweeps for every direction are completed, flux 
moments can be updated in Step 2. The group iteration (g=1, G) needs to repeat only once 
for fixed source problems with only down-scattering, because the scattering source for the 
current group only depends on the converged upper group flux moments. The summation 

over groups in the scattering term can be reduced to 
1
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problems with up-scattering, an outer iteration is required since the scattering source is 
coupled with lower energy groups. For eigenvalue problems, another outer loop is necessary 
so that the fission source and k-effective can be updated in between two successive outer 
iterations.  

2.4 Differencing Scheme 
From Eq. 2-1 to Eq. 2-5, we are finally one step away to numerically solving the LBE, 

which is the evaluation of the differencing (streaming) term in Eq. 2-5 by various 
differencing schemes. As shown in Figures 2-2, Eq. 2-5 applies on a spatial domain of a fine 
mesh with the sizes of ,  and zx yΔ Δ Δ  on three axes.  
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Figure 2-2.  Differencing scheme on one fine mesh.  

Here, we solve for the average flux on the fine mesh. 
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Where i, j, k are the fine mesh indices, g is the group index, and n is the direction index. 
ijkV x y z= Δ Δ Δ is the volume of the fine mesh. Now, we can finally complete the 

discretizations on all three domains in the phase space. To calculate ( )n
gijkψ , we integrate Eq. 2-

5 over the fine mesh volume ijkV . 
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We assume cross sections are constant inside the fine mesh. In a similar way as Eq. 2-
6, we define the fluxes on the three incoming boundaries and the three outgoing boundaries 
as: 
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And the angular source for the fine mesh can be defined as: 
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We can divide both sides of Eq. 2-7 by ijkV , then substitute Eqs. 2-6, 2-8 and 2-9 into Eq. 2-7, 

and obtain Eq. 2-10. 

( ) ( )
 out  in y out y in  out z in( ) ( ) ( ) n nn n n

x x z ijk gijk gijkQ
x y z

μ η ξψ ψ ψ ψ ψ ψ σ ψ− + − + − + =
Δ Δ Δ

                   (2-10) 



 

11 

In Eq. 2-10, the three incoming fluxes ( in y in z in,   and xψ ψ ψ ) can be obtained from the fine-

mesh boundary conditions at the three incoming surfaces. Therefore, to calculate ( )n
gijkψ  and 

the three outgoing fluxes, we need three additional equations, which are provided by the 
differencing scheme. One of the simplest schemes is the linear diamond (LD) differencing 
(Ref. 7) expressed by:  
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When moving in positive directions (as shown in Figure 2-2), we may eliminate the 
outgoing fluxes in Eq. 2-10 by using Eq. 2-11 to obtain Eq. 2-12. 
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The original LBE (Eq. 2-1) reduces to a set of linear equations of Eqs. 2-11 and 2-12. 
Note that the incoming surfaces change for different directions. The fine mesh sweeping 
order is decided by the octant number of the direction. The same principle is also applied to 
coarse meshes: we always try to calculate the outgoing fluxes by solving the LBE based on 
the incoming fluxes. In this sweeping process, the outgoing fluxes will be the incoming flux 
for the next adjacent fine/coarse mesh along the direction. If the incoming or outgoing 
boundaries of the fine/coarse mesh are aligned with the model boundaries, model boundary 
conditions are applied. However, for the coarse mesh sweep, flux projections are required on 
the interface of two adjacent coarse meshes if the two coarse meshes use different spatial and 
angular discrtetization grids. The projection techniques are discussed in Section 2.9. 

In Eq. 2-12, the terms of n

x
μ
Δ

, n

y
η
Δ

 and n

z
ξ
Δ

are always positive, since we always sweep 

fine meshes along the direction defined by the direction cosines ( , , )n n nμ η ξ , i.e., nμ and xΔ , 

either both are positive, or both are negative. The incoming fluxes, ( )n
gijkQ  and ijkσ  are positive 

with their physical meaning. As a result, ( )n
gijkψ  is always positive. However, the outgoing 

fluxes calculated by Eq. 2-11 of the linear diamond differencing scheme could be negative, 
which conflicts with its physical meaning. In order to avoid negative fluxes, flux zero fix-up 
is usually applied in the diamond differencing scheme. Furthermore, the diamond 
differencing scheme introduces artificial oscillations in certain conditions (Ref. 12). For this 
reason, and to facilitate increasing accuracy with adaptive differencing, more advanced 
differencing schemes (Refs. 13-14), such as DTW (Ref. 15), EDW (Ref. 16), and EDI (Ref. 
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17) are implemented in the PENTRAN code. Currently, the diamond and DTW differencing 
schemes are applied in the TITAN code.  

2.5 Characteristics Formulations  
Now we further discuss the formulations for the MOC used in the TITAN code. MOC 

solves the transport equation for the angular flux along characteristic rays with region-wise 
discretization grid (i.e. coarse mesh) in the spatial domain. Since a region can be any shape, 
MOC has the ability to treat the geometry of a model exactly. Similar to the coarse/fine mesh 
sweep process in the SN method, in the MOC, we still calculate the outgoing flux based on 
the incoming flux for each region, and the outgoing flux will be the incoming flux for the 
next adjacent region. In the angular domain, we perform this sweeping process for a number 
of directions chosen by a quadrature set. Within one region, we assume constant cross 
sections and calculate the average flux for the region by filling the region with characteristic 
rays along the directions in a quadrature set. Figure 2-3 shows the parallel characteristic rays 
along direction n in a square region i.  

 
Figure 2-3.  Schematic of characteristic rays in a coarse mesh using the characteristics 

method. 

For a given ray of k with a path length of inks , we solve the transport equation for 

( )  0g ink in kl l sψ ≤ ≤ , which is the angular flux for group g , along direction n, at position l  

along ray k in region i. We denote )0(gink
in
gink ψψ = and )( inkgink

out
gink sψψ = . The transport 

equation along ray k can be written as: 

ginginkgiginkn Qll =+∇⋅Ω )()(ˆ ψσψ                                                                           (2-13) 
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Where  or gin scattering fission fixQ S S S= +  is the total angular source in region i along direction n 

for group g. We assume a constant angular source for each ray in region i along direction n. 
The streaming term in Eq. 2-13 can be viewed as flux gradient’s projection along direction n, 
which is the directional derivative of the angular flux. Therefore, Eq. 2-13 can be rewritten as: 

ginginkgi
gink Ql
dl
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=+ )(

)(
ψσ

ψ
                                                                                   (2-14) 

Where, l is the path length. Eq. 2-14 can be solved analytically if we know the incoming flux 
(0)in

gink ginkψ ψ= as a boundary condition.  

)1()( l

gi

ginlin
ginkgink

gigi e
Q

el σσ

σ
ψψ −− −+=                                                                          (2-15) 

The outgoing flux can be calculated as follows. 

( ) (1 )g i in k g i in ks sg ino u t in
g in k g in k in k g in k

g i

Q
s e eσ σψ ψ ψ

σ
− −= = + −                                (2-16) 

In order to calculate the average angular flux in region i, first we use Eqs. 2-15 and 2-
16 to evaluate the average angular flux for each parallel ray along direction n, which is given 
by: 
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Where out
gink

in
ginkgink ψψ −=Δ . Then, we evaluate the average angular flux for region i by 

summation of average angular fluxes for all the parallel rays along direction n, with a 
weighting factor of inkinkink sAV δδ = , where inkAδ  is the width (in 2-D) or the cross sectional 
area (in 3-D) which ray (i,n,k) represents. The average angular flux along direction n is 
expressed by: 
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Note that the volume (in 3-D) or the area (2-D) for region i can be represented as 

∑∑ =≈
k

inkink
k

inki sAVV δδ , if inkAδ is small enough. Since inkAδ represents the distance 

between two adjacent parallel rays, denser rays are required to cover region i as inkAδ
decreases. Therefore, in order to get an accurate region-averaged angular flux with Eq. 2-18, 
two conditions are necessary: 

• Region i is small, or flux changes slowly over the region. 

• Rays are dense enough to cover the region.  

Note that similar conditions are required in the SN method in the sense of spatial 
domain discretization approach. Generally, in the SN method finer meshes are required to get 
a more accurate flux distribution.  

The source iteration scheme can be applied to the MOC similarly as in the SN method. 
Eqs. 2-16 and 2-18, as Eqs. 2-11 and 2-12 in the SN method, are the fundamental equations 
for Step 1 (the ‘sweep’ process) in the source iteration scheme, except that the fine-mesh-
averaged angular flux in the SN method becomes region-averaged angular flux in the MOC. 

2.6 Block-Oriented Characteristics Solver 
The block-oriented characteristics solver is different from the general MOC approach, 

in the sense that we only apply the solver on an individual block within the multi-block 
framework. For a characteristics coarse mesh, we build uniform fine meshing on the 
boundaries, and draw the characteristic rays from the fine mesh centers along quadrature 
directions. We consider the characteristics coarse mesh as one region. And the coarse mesh 
space is covered with characteristic rays. The boundary fluxes with uniform fine meshing 
grid are used to communicate with adjacent blocks, since coarse meshes are coupled on their 
interfaces in the sweep process. 

2.6.1 Backward Ray­Tracing Procedure 

 Figure 2-4 shows a typical coarse mesh with 5 5×  fine meshes on the 6 surfaces. Note 
that fine meshing is only applied on the surfaces of a coarse mesh to which the characteristics 
solver is assigned. The same coarse-mesh volume could be divided into 5 5 5× ×  fine meshes 
if the SN solver is assigned. 
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Figure 2-4.  A coarse mesh with characteristics solver assigned. 

Now we can demonstrate how we set up rays in a coarse mesh shown in Figure 2-4. In 
the ‘sweep’ process, our goal is to calculate the outgoing flux based on the incoming flux. In 
Figure 2-4, the front surface becomes one of the three outgoing surfaces for the directions in 
four of eight octants in a quadrature set. For the other four octants, it becomes one of the 
three incoming surfaces. For demonstration purposes, we assume the front surface in Figure 
2-4 is one of the outgoing surfaces. Now we need to calculate the outgoing angular flux for 
each fine mesh on the surface for each direction in the four octants. Figure 2-5 shows the 
characteristic rays associated with the center fine mesh on the front surface. 
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Figure 2-5.  Characteristic rays for one fine mesh on one outgoing surface. 

As shown in Figure 2-5, we draw 12 rays backward from the center of one fine mesh (located 
on the front surface) to the incoming surfaces across the coarse mesh. The four different 
color rays in Figure 2-5 represent the directions in four octants. Since the intersection 
positions are not necessarily at the centers of fine meshes on the incoming boundary, an 
interpolation scheme is required to calculate the incoming fluxes at the intersection positions 
based on the known incoming fluxes at the fine-mesh centers. Here, we consider an S4 
quadrature set which provides three directions per octant. For directions in 4 of the 8 octants, 
the front surface is one of the three outgoing surfaces. Therefore, 12 rays for each fine mesh 
on the front surfaces are required. The overall characteristic ray density to cover the coarse 
mesh depends on both the fine mesh grid densities on the outgoing boundaries and the 
number of directions in the quadrature set. Figure 2-3 also illustrates the characteristic ray 
drawing procedure in 2-D. The green dots on the outgoing boundary in Figure 2-3 are located 
on the centers of the fine meshes. While the red dots, which represent the intersection points 
on the incoming boundary, are off-centered.  

2.6.2 Advantage of Backward Ray­Tracing  

In the characteristic ray drawing procedure, we could choose a ‘forward’ approach: 
drawing the characteristic rays from the fine mesh centers on the incoming boundary to the 
outgoing boundary. The outgoing boundary will experience rays intersecting its fine meshes 
in a scattered manner. After the outgoing angular fluxes are calculated, an interpolation 
procedure is required to project the scattered outgoing flux onto the fine mesh centers. 
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In a ray drawing procedure, we can always choose a fine mesh center, either on the 
incoming boundary or on the outgoing boundary, as one node of each characteristic ray to 
avoid interpolations on that boundary. The other node of the ray will be scattered onto the 
other boundary, on which interpolations are required regardless since we are interested in the 
fluxes only on the centers of the fine mesh grid. An interpolation procedure on the incoming 
boundary needs to evaluate the angular flux at the incoming node of each characteristic ray 
based on the known incoming fluxes at the structured fine mesh centers. On the other hand, 
an interpolation procedure on the outgoing boundary needs to evaluate the outgoing flux at 
the center of each fine mesh based on the calculated fluxes at the scattered outgoing nodes of 
the rays. The difference between the two choices is: on the incoming boundary, the 
interpolation procedure is carried on from structured data points (incoming fluxes on the fine 
mesh centers) to scattered data points (incoming fluxes for the rays), while on the outgoing 
boundary, the procedure is carried on from scattered data points (outgoing fluxes from the 
rays) to structured data points (outgoing fluxes on the fine mesh centers). 

In the block-oriented characteristics approach, we choose to fix the interpolations on 
the incoming boundary, because it is numerically more accurate and efficient to interpolate 
scattered points from structured points than the other way around.  For interpolations on the 
outgoing boundary, the scattered outgoing nodes of the rays are the known base points. These 
scattered points could be too few, or too badly non-uniformly scattered on the boundary, to 
complete a relatively accurate interpolation to evaluate the flux on the center of every fine 
mesh. For interpolations on the incoming boundary, the structured, uniformly distributed fine 
mesh center fluxes are the known data points. Four closest fine mesh centers to any scattered 
point can always be found to complete a bi-liner interpolation. Clearly an interpolation 
procedure on the incoming boundary is a better choice. The backward ray-tracing facilitates 
the integration of the block-oriented solvers.  

2.6.3 Ray Tracer 

In order to calculate the outgoing flux by using Eq. 2-16, we need to evaluate the 
incoming flux, which is located on the other end of the rays on the incoming surfaces. The 
incoming flux is known from the boundary conditions if the incoming surface is part of the 
model boundaries, or from the outgoing flux for the adjacent coarse mesh in the coarse mesh 
sweep process. We assume these fine-mesh-averaged incoming angular fluxes are located on 
the center of each fine mesh on the incoming surface. However, the intersection point on the 
incoming surface is not necessarily on the center of a fine mesh. Therefore, we need to 
determine the intersection position of the ray with the incoming surface, and to evaluate the 
flux at the intersection point by some interpolation method from the fine-mesh-centered 
incoming flux array. 

In a MOC code, a ray tracer subroutine is required to calculate the intersection point of 
a ray with a surface. The coordinates of the points along a ray can be defined as: 
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                                                                                                               (2-19) 

Where 0 0 0( , , )x y z is the starting point of the ray, t is path length along the ray, and ( , , )μ η ξ  
are the direction cosines. We can substitute Eq. 2-19 into a region boundary surface function 
to evaluate the coordinates of the intersection points of the ray with that surface and the path 
length t (i.e., inks  in Eqs. 2-16 and 2-18). In the MOC, it can be very expensive, in terms of 
computer memory, to store the geometry information if the number of rays and the number of 
regions are very large. For this reason, 3-D MOC could be prohibitive for a large model. The 
block-oriented characteristics solver considers the whole coarse mesh as one region. 
Therefore, for Eq. 2-19, the region boundaries become the coarse mesh surfaces. Because the 
characteristics solver is designed for solving the transport equation in a low scattering 
medium, across which we can expect that the angular flux along the ray does not change 
significantly, it is possible to use a relatively large region (i.e. a coarse mesh) for a flat-
source MOC formulation.  

2.6.4 Interpolation on the Incoming Surface 

Based on the positions of the intersection points of rays on the incoming surface of a 
coarse mesh, we can further evaluate the averaged flux for each fine mesh by interpolation. 
As shown in Figure 2-6, points A, B, C, and D denote the closest 4 neighbors to point P, 
which is the intersection point of a characteristic ray across one incoming boundary. We need 
to evaluate the angular flux at point P based on the fluxes at the 4 neighboring points. 

 
Figure 2-6.  Bilinear interpolation for the incoming flux. 

For simplification, we assume the coordinates for the 4 neighbors and point P are A(-
1,-1), B(1, -1), C(1, 1), D(-1, 1) and P(s, t), where s, t are evaluated by the ray tracer. Note 

A•  •  B 

• C (1, 1)
(-1,1) 

D•

oP(s,t)
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that the actual positions of the fine mesh centers and point P are projected into the 
coordinates shown in Figure 2-6, in which A, B, C, D and P are located at (-1,-1), (1,-1), (1,1), 
(-1,1) and (s, t) for the interpolation. Two interpolation techniques are applied in the TITAN 
code. Either of them can be used to estimate the incoming flux at point P. 

• closest neighbor. 

Pψ is equal to the angular flux at the closest neighbor. For example, in Figure 2-6 Pψ  
will be equal to the Aψ  under the closest neighbor approach. 

• bilinear interpolation. 

A bilinear interpolation formulation is applied: 

(1 )(1 ) (1 )(1 )( , ) ( 1, 1) ( 1, 1)
4 4

(1 )(1 ) (1 )(1 )            ( 1, 1) ( 1, 1)
4 4

s t s ts t

s t s t

ψ ψ ψ

ψ ψ

− − − +
= − − + − +

+ − + +
+ + − + + +

                                         (2-20) 

Where ( 1, 1) Aψ ψ− − = , (1, 1) Bψ ψ− = , ( 1, 1) Cψ ψ+ + = , ( 1, 1) Bψ ψ− + =  , and ( , ) Ps tψ ψ= . The 
truncation error indicates the bilinear approach is a second order interpolation. And it should 
be more accurate than the first approach, which is a first order interpolation. However, we 
should note that these point-wise angular fluxes are actually averaged values: fine-mesh-
centered fluxes ( Aψ , Bψ , Cψ , and Dψ ) are the averaged fluxes on the fine meshes, and the 

ray intersection-point flux ( Pψ ) is the averaged flux on the cross sectional area ( inkAδ  in Eq. 
2-18) of the volume the ray represents. An assumption is made that the averaged flux 
happens at the center of the fine mesh, or at point P of the ray cross section area. This 
assumption is reasonable if the fine mesh is small. Therefore, our ray solver may require a 
relatively finer meshing on the coarse mesh surfaces, which leads to denser rays in the coarse 
mesh and longer computer time and memory requirements. On the other hand, if the fine 
mesh is relatively large, the closest neighbor interpolation scheme is not necessarily less 
accurate than the advanced bilinear interpolation. The most suitable interpolation scheme 
could depend on the problem and its modeling. By default, the bilinear interpolation scheme 
is used in the TITAN code.  

In the characteristics solver, the cross sectional area represented by each ray (defined 
in Eq. 2-18) can by calculated by the following formulation: 

)cos(,, θδ ×= jiji SA                                                                                                    (2-21) 

Where Si,j is the fine mesh area on the outgoing boundary, and θ  is the angle between the ray 
direction and the direction normal to the boundary. Even with a uniform fine meshing 
applied on the surfaces of a coarse mesh for the characteristics solver, rays are not 
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necessarily distributed uniformly within the coarse mesh volume, because rays along a 
certain direction can form different angles with the normal directions of the three incoming 
surfaces of the coarse mesh. Non-uniform ray distribution could lead to the requirement of 
denser rays and/or smaller coarse meshes to maintain accuracy of the bi-linear interpolation.  

2.7 Quadrature Set 
We discussed the formulations for the SN and characteristics solver, respectively. Our 

focus has been on the Step 1 of the source iteration scheme, which is to solve the transport 
equation for the angular flux. For Steps 2 and 3, the formulations are fundamentally the same 
for both solvers because of the following similarities between two methods: 

• Calculate the angular flux, although with different formulations. 

• Apply the same energy and angular domain discretization approaches. 

• Use the source iteration scheme. 

The major difference between the two methods is the discretization method in spatial 
domain. Both block-oriented solvers share the same goal to calculate the outgoing angular 
fluxes for a block. However, they complete the task with different formulations of the 
original LBE. Now we can further demonstrate Step 3 of the source iteration scheme. In both 
methods, we denote the source term in Eq. 2-5 or Eq. 2-15 by: 

 or scattering fission fixQ S S S= +                                                                                       (2-22) 

For simplification, we omit the index for energy group, direction, and fine mesh (SN) or 
region (MOC). In Eq. 2-22, fixS  is known as external source. scatteringS  and fissionS  can be 

evaluated from flux moments calculated from the results of the previous iteration.  
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Where i is the iteration index, g is the energy group index, l  and k are the Legendre 
expansion indices, ( , )n nμ ϕ  specifies direction n in the quadrature set, 

( 1) ,( 1) ,( 1)
', ,  ', ,  ', ,  , and i k i k i

g l x C g l x S g lφ φ φ− − −  are the flux moments calculated from the last iteration, which is 

indexed by i-1 here, and x is the fine mesh index in the SN formulation, or the region index in 
the MOC formulation.  

The scattering kernel defined by Eq. 2-23 can be expanded to an arbitrary Legendre order if 
the same order of cross section data is provided. The isotropic fission source and the k-
effective can be evaluated by Eqs. 2-24 and 2-25 from an outer iteration. 
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Where <> denotes the integration over the entire phase space. Note that j is the outer iteration 
index, while in Eq. 2-23 i is the inner iteration index. Scattering source is updated after one 
sweep is completed for each group, while the fission source is updated only after all groups 
are converged based on the previous fission source.  

Equations 2-23 and 2-24 are the formulations for Step 3 in the source iteration scheme. For 
Step 2, we use a quadrature set to evaluate the integral over angular domain defined in Eqs. 
2-2 to 2-4 for flux moments. 
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Here, for simplification, we drop the indices for energy group and fine mesh or region. 
Direction n can be specified by ( , ) where 1 1 , 0 2n n n nμ ϕ μ ϕ π− ≤ ≤ ≤ < , or 

2 2 2( , , ) where 1 , , 1 , 1n n n n n n n n nμ η ξ μ η ξ μ η ξ− ≤ ≤ + + = . In order to preserve symmetries, a 

quadrature set only specifies directions in the first octant ( 0 , , 1n n nμ η ξ≤ ≤ ), directions in the 

other octants can by acquired by changing the signs of nμ , nη , and/or nξ . For example,

( , , )n n nμ η ξ− − −  specifies the opposite direction corresponding to direction  ( , , )n n nμ η ξ  in 

another octant. Direction ( , , )n n nμ η ξ  and all its seven corresponding directions in other 

octants have the same weight ( nw ). Usually, we keep the total weight for all directions in one 

octant equal to one. These directions and the associated weights ( nw ) are carefully chosen by 
a quadrature set, so that we can accurately evaluate the moments of direction cosines and the 
flux moments defined by Eq. 2-26. Other concerns related to the physics of the problems can 
affect the choice of the directions too. Further discussions are given in Appendix B. 
Currently, in the TITAN code, we have two types of quadrature sets available: the level-
symmetric quadrature (Ref. 6) and the Legendre-Chebyshev quadrature (Ref. 19)  

2.7.1 Level­symmetric Quadrature  

Figure 2-7 shows a level-symmetric quadrature with an order of 10 (S10). We use a 
point on the unit sphere to represent a direction. The xyz coordinates of the point are the three 
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direction cosines of the direction. These directions are ordered with a ‘triangle shape’ 
formation. To generate a quadrature set, we need to find the direction cosines and the weights 
for all the directions. 

 
Figure 2-7.  Schematic of the S10 level-symmetric quadrature set in one octant. 

S10 specifies 15 directions in the first octant on 5 levels. Directions in the other seven 
octants are chosen to be symmetric to the directions in the first octant. Therefore, the total 
number of directions on the unit sphere is 15 8 120× = for all 8 octants. Generally, for a level-
symmetric quadrature with an order of N, we can calculate the number of levels L, and total 
number of directions M in the first octant by: 

8
2)(NNM  , 

2
+×

==
NL                                                                                         (2-27) 

To keep a symmetric layout of the directions, N is always chosen from even numbers. 
The level-symmetric quadrature set is widely used in the SN codes for its rotation invariance 
property and preservation of moments. Rotation invariance keeps the quadrature directions 
unchanged after 90 degree rotation along any axis. In other words, if ( , , )n n nμ η ξ  is one 

direction in the first octant of the quadrature set, any combinations of nμ , nη , and nξ , such 

as ( , , )n n nμ ξ η  or ( , , )n n nξ η μ , are also defined in the first octant of the quadrature set. Note 
that rotation invariance is different from octant symmetry of the directions, where 

),,( nnn ηξμ ±±± defines the eight symmetric directions in the eight octants. Rotation 
invariance is very desirable in many real problems to keep the symmetry, especially when 
reflective boundary conditions are applied. However, it also places a strict constraint on the 
choice of the quadrature directions. The symmetry condition requires kji ξημ  , ,  for 

2
,,1 Nkji ≤≤  following the same sequence. 
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In Eq. 2-28, only 1μ  is free of choice. The remaining degrees of freedom on direction 
weights are used to conserve the odd and even moments of μ , η , and ξ .10 
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The directions and their associated weights can be calculated by Eqs. 2-28 and 2-29. 
Level-symmetric quadrature only can conserve moments to an order of maximum L=N/2 
because of the symmetry condition. Another disadvantage of level-symmetric quadrature is 
that Eqs. 2-28 and 2-29 lead to negative weights if N is greater than 20. Negative weights are 
not physical. Therefore, they cannot be used. This means that the order of Level-Symmetric 
quadrature is limited to 20. 

2.7.2 Legendre­Chebyshev Quadrature  

The Legendre-Chebyshev quadrature, also called PN-TN quadrature, aims to conserve 
moments to a maximum order without the constraints of the symmetry condition. Figure 2-8 
shows a PN-TN S10 quadrature layout. 

 
Figure 2-8.  PN-TN quadrature of order 10. 

The Legendre-Chebyshev quadrature conserves moments to the order of 2L-1, instead 
of L in the level-symmetric quadrature set (L=N/2), at the cost of lack of rotation invariance. 
Moments in Eq. 2-28 cannot be conserved strictly in the PN-TN quadrature. Note that Figures 
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2-7 and 2-8 share a similar triangle-shaped direction layout on the unit sphere, because Eq 2-
27 still holds in the PN-TN quadrature. The direction weights are positive definite in the PN-
TN quadrature. Therefore, unlike the level-symmetric quadrature set, the PN-TN quadrature 
order is unlimited mathematically, except for the limitation of computer memory limitation. 

We have derived the procedure on how to build the PN-TN quadrature on the unit 
sphere. Based on the procedure, it can be shown that the PN-TN quadrature is the best choice 
in mathematically conserving higher moments. We also have proved the positivity of weights 
in PN-TN quadrature. Details of the above derivations are given in Appendix B. To build a 
PN-TN quadrature set, it is required to find the roots of an even order Legendre polynomial. 
These roots are used as level positions of the quadrature. A modified Newton’s method is 
applied. Details of the algorithm also are given in Appendix B. 

2.8 Ordinate Splitting  
Ordinate splitting is a technique associated with a quadrature set (Ref. 20). A selected 

direction in a quadrature set can be further split into a number of directions. The total weight 
of the split directions is equal to the weight of the original direction in the quadrature. We 
apply the ordinate splitting techniques to solve problems with highly peaked angular-
dependent flux and/or source. 

2.8.1 Rectangular and Pn­Tn Spliting 

Figure 2-9 depicts the two splitting directions for one direction of an S10 quadrature set. 
Note that ordinate splitting technique is independent of choice of quadrature set type or order, 
and can be applied to as many directions as necessary. 

A    B  

 

Figure 2-9.  Ordinate splitting technique. A) Rectangular splitting. B) PN-TN splitting. 
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In the rectangular splitting technique, the split directions are uniformly distributed 
within a box-shape region centered at the original quadrature direction. In the TITAN code, 
the size of the box can be defined by users. The total number of splitting directions can be 
calculated from the user-specified splitting order with Eq. 2-30. 

2(2 1)s l= −                                                                                                                (2-30) 

Where s is the total number of splitting directions, l  is the splitting order. Figure 2-9A shows 
the 25 split directions for a rectangular splitting with an order of 3. All the splitting directions 

are equal-weighted, defined as 1
s nw w

s
= , where nw  is the weight of the original direction, 

which remains in the quadrature set after splitting with a reduced weight. 

The rectangular-shaped layout of the split direction may not be efficient in conserving 
the moments. We developed the Legendre-Chebyshev (PN-TN) splitting technique based on 
the regional angular refinement (RAR) technique.26 In the PN-TN splitting, the original 
direction can be associated with a local area on the unit sphere surface centered on the 
original direction. And the range of the area can be decided by users as in the rectangular 
splitting. The technique projects the directions in the first octant of a regular PN-TN 
quadrature set with an order of 2l (l is the splitting order), into the local area. For a regular 
PN-TN quadrature, usually there is only one direction on the top level as shown in Figure 2-8. 
For the local PN-TN quadrature fitted in the splitting technique, users can specify the number 
of directions on the top level. The number of directions on the following levels increases by 
one from the previous level, as for a general PN-TN quadrature. Therefore, the total number of 
split directions can be calculated by: 

(2 1)
2

t l ls + − ⋅
=                                                                                                          (2-31) 

Where t is user-specified number of directions on the top level, and l  is the splitting order. 
The weights of the split directions are calculated in the same way as a general PN-TN 
quadrature, except that we normalize the total weight to the original direction weight, instead 
of unity as in a general PN-TN quadrature. The split direction weights is calculated by Eq. 2-
32. 

TSPSns wwww __ ⋅⋅=                                                                                          (2-32) 

Where nw  is the original weight of the splitting direction, PSw _  and TSw _  are the level 

weight and the Chebyshev weight, respectively for one split direction in the local PN-TN 
quadrature. Note that unlike the rectangular splitting, the original splitting direction is 
dropped off after splitting in the PN-TN splitting technique. However, the split directions 
could be more ‘uniformly’ distributed within the splitting region than the rectangular splitting, 
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since it is formed ‘uniformly’ on a sphere surface instead of a rectangular region, and also the 
PN-TN quadrature conserves integrations more accurately than an equal-weighting 
formulation. 

2.8.2 Circular Splitting 

Circular Ordinate Splitting (COS) technique is originally developed to simulate the 
SPECT collimator blurring effect (Ref. 4) as shown in Figure 2-10. 

 
Figure 2-10 Circular ordinate splitting in a fictitious quadrature set (See section 2.10) 

 In the COS, the split directions are located along a circle centered on the original 
projection direction. The radius of the circle is calculated based on the SPECT collimator 
acceptance angle. We use quaternions to mathematically describe rotations and calculate the 
directional cosines for each direction. By averaging the angular fluxes over the original and 
split directions, we can simulate part of the projection image blurring effects due to the 
collimator acceptance angle. Note that particle transport within the collimator is not 
simulated in the deterministic calculation. In other words, we assume all particles travelling 
outside the acceptance angle will be absorbed in the collimation septa. As with other ordinate 
splitting techniques, the number of split directions in the COS is determined by the splitting 
order. The splitting order is the number of directions on one circle, however, a user can 
consider more than one circle, and therefore achieve a more refined angular representation. 

2.9 Projections on the Interface of Coarse Meshes 
The TITAN code is built on the multi-block framework with the source iteration 

scheme. Both the block-oriented SN and characteristics solvers can apply an individual 
quadrature set and fine-meshing scheme on each coarse mesh. Transport calculations can 
benefit from the multi-block framework, which provides users more options on the choices of 
discretization grids in different regions of a problem model. However, the benefits are not 
free in term of computational cost. In Step 1 of the source iteration scheme, while sweeping 
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across the interface of two coarse meshes, we need to project the angular flux on the interface 
from one frame to the other, if the two coarse meshes use different quadrature sets and/or 
fine-meshing schemes. Therefore, angular and spatial projection techniques are developed to 
transfer the interface angular fluxes in the coarse-mesh-level sweep process. 

2.9.1 Angular Projection 

Angular projection is triggered by the two adjacent coarse meshes with different 
quadrature sets. Figure 2-11 shows the layout of directions in two quadrature sets. 

A      B  

Figure 2-11.  Angular projection. A) Level-symmetric S10 (red) to PN-TN S10 (green). B) S10 
to S8. 

Figure 2-11A compares the directions for the level-symmetric and PN-TN quadrature 
sets of order 10. Figure 2-11B presents a more general situation of angular projection: from a 
higher order quadrature to a lower order quadrature, or vice versa. In general, an angular 
projection from quadrature P to quadrature Q is used to evaluate the angular fluxes for the 
directions in quadrature Q for each fine mesh on the interface, based on the angular fluxes 
from quadrature P. For each direction nΩ  in quadrature Q, we search for the closest three 

neighboring directions in quadrature P to nΩ . The angular flux for nΩ  can be calculated by a 

mθ
1 weighting scheme, where m is a positive integer, and θ is the angle between nΩ  and one 

neighbor direction in quadrature P. Note that θ also represents the shortest distance between 

nΩ and its neighbor on the surface of a unit sphere. As shown in Figure 2-12, P1, P2, and P3 

are the three closest neighbors in quadrature P to nΩ in quadrature Q.  
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Figure 2-12.  Theta weighting scheme in angular domain. 

If we consider that the distances between nΩ and the three closest neighbors are 1θ , 2θ , 

and 3θ , respectively, then the angular flux at nΩ can be written as: 
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Where )(mf is the m’th normalization factor and defined as mmm
mf
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)( 111
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++= . Note that 

we set the angular flux at nΩ equal to the closest neighbors, if the minimum distance is less 

or equal than 410−  radians.  

The 0’th moment (scalar flux) and the first moment (flux current) of the angular flux 
have to be conserved after an angular projection. Therefore, we need to maintain: 
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Where, N  and M  are the total number of directions in one octant in quadratures P and Q, 
respectively. 

iPμ is the cosine of the angle between the interface normal direction and 

direction i in quadrature P. 
jQμ is the cosine of the angle between the interface normal 

direction and direction j in quadrature Q. And w’s are the direction weights. Note that the 

total weights are set to one for both quadrature sets ( 1
11

== ∑∑
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)(Q
jψ , while conserving the scalar flux and the current, we assume 

jQψ is a linear combination 

of )1(
jQψ  and )2(

jQψ . 

)2()1(
jjj QQQ ψβψαψ ⋅+⋅=                                                                                                  (2-36) 

Where, )1(
jQψ  and )2(

jQψ  are calculated with Eq. 3-1 with m=1, 2, respectively. And α and β are 

the linear coefficients, which can be evaluated by substituting Eq. 3-4 into Eqs. 3-2 and 3-3.  
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 Once )1(
jQψ , )2(

jQψ , α, and β are evaluated by Eqs. 3-1, 3-5, and 3-6, 
jQψ  can be 

calculated by Eq. 3-4. Under this angular projection scheme, the scalar flux and the first flux 
moment remains the same for each fine mesh on the interface before and after the projection. 
It is also possible to conserve higher moments at additional computational cost. We can 

always introduce higher order weighting schemes with Eq. 3-1 (e.g. 3
1
θ

, 4
1
θ

), then more 

terms and coefficients can be added in Eq. 3-4.  In order to calculate the linear combination 
coefficients (α, β, γ etc.), higher moment conservation equations can be introduced besides 
Eqs. 3-2 and 3-3. Although the scattering source term defined by Eq. 2-23 is calculated with 
all flux moments up to the order of L, generally it is not necessary to conserve flux moments 
with an order higher than one on the interface, since only the 0’th and first moments carry 
physical meanings (scalar flux and flux current), other than just a mathematical term.  

In the TITAN code, we also apply a negative fix-up rule to keep the positivity of 
angular fluxes by relaxing the 0’th and/or the first moment conservation rule if necessary. 
The angular projection can be used with any type of the quadrature set. It is also compatible 
with the ordinate splitting technique. In order to perform a relatively efficient angular 
projection, it is recommended that both projecting and projected quadrature sets have at least 
three directions per octant (i.e. at least S4). If there is only one direction in one octant (i.e. S2), 
the direction can be considered as three directions with the same position and only one-third 
of the original weight, so the above angular projection procedure still can be performed 
without any modifications. 
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2.9.2 Spatial Projection 

Spatial projection is triggered if the fine-meshing schemes mismatch on the interface 
of two adjacent coarse meshes. Figure 2-13 shows a projection situation between a 3x3 
meshing scheme and a 2x2 meshing scheme. 

A   B  

Figure 2-13.  Mismatched fine-meshing schemes on the interface of two adjacent coarse 
meshes. A) 3-D layout. B) 2-D layout. 

In Figure 2-13B, we denote the 3x3 fine meshes on the green surface as g(1,1), 
g(2,1) … g(3,3), the 2x2 fine meshes on the red surface as r(1,1), r(2,1) … r(2,2). The 
average angular fluxes on these fine meshes can be referred to as )3,3()1,1( )()( gg ψψ →  and 

)2,2()1,1( )()( rr ψψ → .  

Assuming a green-to-red projection, we need to calculate )2,2()1,1( )()( rr ψψ →  based 

on )3,3()1,1( )()( gg ψψ → by an area weighting scheme. Here, we only demonstrate how to 

calculate the angular flux on fine mesh r(1,1). The rest of the red meshes can be evaluated 
based on the same approach.  
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Where A1, A2, and A3 are the shade areas in Figure 3-3B. Ag(1,1) is the area of fine mesh 
g(1,1). Since fine meshes are uniformly distributed on either surface, we can denote 
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gg AA =)1,1( . Note that 321)1,1( AAAAA gr +++=  is the area of fine mesh r(1,1). Therefore, 

the factor )( gf  can be denoted as: 
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If we assume a red-to-green projection, ( ) ( )(1,1) (3,3)g gψ ψ→  will be evaluated based 

on ( ) ( )(1,1) (2, 2)r rψ ψ→ . The same area weighting scheme can be applied: 
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The area weighting scheme can conserve the angular flux for each fine mesh, 
assuming a flat flux distribution within fine meshes. Therefore, the total angular flux over the 
entire interface is conserved automatically. The post re-normalization process described in 
the angular projection is not necessary in spatial projection. In the TITAN code, we separate 
the 2-D projection to two single 1-D projections in order to reduce computation cost. For 
example, a 2-D 4683 ×→×  projection can be separated as a 63→ projection along x axis, 
and an 48→ projection along y axis, because x and y projections are actually independent of 
each other. Generally, a projection pair,  mn → and nm → , require mn××2  memory units 
to store the geometry meshing factors ( )( gf , )(rf ). However, since most of the factors are 

zeros, we store only the non-zero factors with a sparse matrix for each projection pair. Note 
that the factors in an   mn → projection remain the same whether they are applied in an x or 
y axis projection.  

2.9.3 Projection Matrix 

Both angular and spatial projections could be expensive in the source iteration scheme, 
because for every iteration, they are performed whenever the ‘sweep’ processes cross the 
interface of two coarse meshes with different angular or spatial frame. If both projections are 
required on an interface, we perform the angular projection first, then the spatial projection. 
A projection from coarse mesh A to coarse mesh B on the interface can be described as 

B AB APψ ψ=                                                                                                                  (2-42) 

Where PAB is a projection matrix, which stores all the necessary geometry information on the 
interface. Since projection matrices are independent of angular fluxes, they can be calculated 
and stored before the sweep process starts. 

2.10 Fictitious Quadrature 
We introduce a special kind of problems that the TITAN code can be applied: the 

particle transport problem within a digital medical phantom. To solve a regular transport 
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problem, modeling of the problem is required as one of the initial tasks. And a meshing 
scheme need to be carefully chosen based on the physics of the problem. While in a digital 
phantom, the source and material distributions are stored in the format of voxel values as 
activity (source) and material attenuation coefficients. Therefore, it is a natural choice to 
consider one voxel as one fine mesh in the initial modeling task. In the TITAN code, a 
module is developed to process the digital phantom binary files and automatically generate 
the meshing scheme. Furthermore, since transport calculations for medical phantoms often 
involve the simulations of radiation projection images, we developed the fictitious quadrature 
technique to calculate the angular fluxes for specific directions of interest that may not be 
available in a regular quadrature set. The performance of the technique is tested in a digital 
heart phantom benchmark.  

2.10.1 Extra Sweep  

In the TITAN code, multiple quadrature sets can be used in one problem model. A 
regular quadrature is built based on the criteria of conservation of flux moments. Fictitious 
quadrature is designed differently from the regular type of quadrature in that its purpose is to 
calculate only the angular fluxes for certain directions, not to conserve the flux moments. 
Therefore, it can not be used in a regular sweep process since the scattering source and flux 
moments cannot be properly handled. However, it can be used after the source iteration 
process is complete with the converged flux moments. 

Generally, in a transport problem, users’ major concern is the scalar flux distribution 
and/or k-eff. However, in some cases, the angular fluxes in the directions of interest need to 
be evaluated. Since the directions are not necessarily included in the problem quadrature sets, 
the angular fluxes in these directions usually cannot directly be calculated by the sweep 
process with a regular quadrature set. In the TITAN code, we can define the directions of 
interest in a fictitious quadrature set, which is used with an extra sweep process only after the 
source iteration process is converged with the regular quadrature set(s). The converged flux 
moments are used to evaluate the scattering source in the extra sweep with the fictitious 
quadrature.  
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Where, upper script (e.s) stands for extra sweep, (fic) for fictitious, (con) for converged. 
)(

,'
con

lgφ , )(,
,',

conk
lgCφ , and )(,

,',
conk

lgSφ are the converged thl  order regular, cosine and sine flux moments. 

And ) ,( )()( fic
n

fic
n ϕμ  specifies a direction in the fictitious quadrature set. 

Equation 6-1 is similar to Eq. 2-23, except that we use the converged flux moments 
after the source iteration process instead of the flux moments from last iteration. And the 
polar and azimuthal angles refer to a direction in the fictitious quadrature set. The fixed 
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source or the fission source can be evaluated the same way as in a regular sweep process. 
After the total source is estimated, we can use the extra sweep process to evaluate the angular 
fluxes in the directions of the fictitious quadrature. 

One also could choose some other methods based on the calculated angular fluxes in 
the quadrature directions to evaluate the angular fluxes of interest. For example, the angular 
projection technique in Chapter 3 can be applied with some modifications. We have tried this 
approach in the TITAN code. Another method could be to apply the Legendre expansion of 
the angular flux based on the converged flux moments. One potential problem with these two 
approaches is that their efficiencies are subject to the accuracy of the angular fluxes in the 
directions of a regular quadrature set. Usually a convergence criterion is set on the scalar flux 
in the source iteration scheme. The accuracy of the angular fluxes or higher moments is not 
always granted. And further mathematical manipulations on the angular fluxes or higher 
moments could introduce more secondary inaccuracies. One advantage of the fictitious 
quadrature technique over the secondary approaches is that the angular fluxes of interest are 
calculated directly from a sweep process. And since the sweep process can be considered as a 
simulation procedure to the physical particle transport phenomenon in certain directions, 
some physics of the model along the interested directions (e.g. fixed source and scattering) 
are taken into account in the evaluation process. Thereby, the extra sweep with the fictitious 
quadrature has more potential to provide an accurate estimation on the interested angular 
fluxes. 

2.10.2 Implementation of Fictitious Quadrature 

It is straightforward to implement the fictitious quadrature technique, since all the 
formulations used in a regular sweep can be applied in the extra sweep. However, due to the 
special design of the fictitious quadrature, some modifications on the regular sweep are 
required to effectively complete an extra sweep.  

The extra sweep starts upon the completion of the source iteration process. The 
fictitious quadrature is built as an initialization task before the source iteration starts. 
Fictitious quadrature sets can be treated as a regular user-defined quadrature set in the 
initialization process, except that any direction regardless of its octant can be defined in the 
quadrature input file, and these directions can be arbitrarily chosen. Note that in a regular 
user-defined quadrature set, only directions in the first octant are defined, and directions in 
other octants are determined by symmetry. As a result, the extra sweep is performed only 
along specific directions defined in the first octant. The extra sweep procedure can be 
illustrated by Figure 2-13. 
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Figure 2-14.  Extra sweep procedure with fictitious quadrature. 

As shown in Figure 2-14, we start the extra sweep by reallocating the angular flux 
array based on the fictitious quadrature set. Since the values of angular fluxes in the regular 
quadrature sets will be lost after the memory reallocation, any task which requires the 
calculated angular fluxes need to be completed before the extra sweep. At the beginning of 
the sweep for group g, we allocate a new array for the boundary angular fluxes, which will be 
deallocated after the group g sweep. The original boundary fluxes calculated from regular 
sweep remain untouched during the extra sweep, because an angular projection from the 
regular quadrature to the fictitious quadrature could be employed on the boundaries if 
reflective boundary condition is used. We apply the same scattering-in moment approach 
discussed in Chapter 5 in the extra sweep as well. Note that the scattering-in moments are 
calculated based on the converged flux moments from regular sweeps, and they are only used 
for evaluation of the scattering source in an extra sweep. Also note that the step to calculate 
flux moments in a regular sweep is removed in the extra sweep procedure.  

We developed a new set of subroutines to complete the extra sweep. Most of these 
new routines are on layer 3 or 4, including the angular projection module, the coarse mesh 
sweep routine, and the differencing scheme routine. Although these subroutines share the 
similar tasks as their counterparts in the regular sweep, some modifications are required due 
to the following concerns:  

• Iteration structure. 

• Direction singularity.  

• Solver compatibility. 

The iteration architecture in a regular sweep for group g is built on the following order 
(from outer to inner): Octant loop, coarse mesh loop, direction loop, fine mesh loop. 

Source Iteration Completion  

1. Reallocation Ang. Flux 

2. Initialize Boundary flux for group g 

3. Recalculate group g in-moments  

Initialize fictitious 
quadrature set 

4. Group g extra sweep 

5. Output group g boundary flux  

Group Iteration  
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However the characteristics of the fictitious quadrature require that the extra sweep to follow 
a different order: direction loop, coarse mesh loop, fine mesh loop. This structure change 
affects most of routines on layer 3 and 4, since all the directions in the same octant are 
handled as a group in the regular sweep, while in an extra sweep, each direction need to be 
treated individually. For example, the coarse mesh or fine mesh sweep order is assigned 
individually for each direction instead by octant. Another modification is made to allow 
negative directional coordinates in the user-defined fictitious quadrature set. 

A regular quadrature set usually avoids directions along an axis or perpendicular to an 
axis. Zero directional cosine or sine occurs for these directions. This singularity could cause 
some potential problems in the sweep process. For example, in the differencing scheme 
discussed in Chapter 2, normally a small perturbation in one boundary incoming angular flux 
can cast some effect on all the three outgoing fluxes, since the three components of the 
incoming angular flux along x, y and z axes are all positive definite or all zeros. For a 
singular direction, however, this is not always true. For example, an incoming angular flux 
along the x axis only has only one positive x component. Therefore, while calculating the 
outgoing fluxes, a differencing scheme need to take measures to treat a singular incoming 
angular flux. 

Unfortunately, singular directions often happen to be the interested directions in a 
fictitious quadrature set. A series of modifications have been made to keep the extra sweep 
subroutines singularity safe, including the differencing scheme, the fine mesh sweep 
procedure, and the angular projection routine.  

The two-solver structure of the TITAN code causes another dimensional difficulty in 
the implementation of the fictitious quadrature set. The technique is originally designed for 
the SN solver only. Later the compatibility to the characteristics solver is achieved. 
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 Chapter 3 - Code Structure 

The fundamental structure of the TITAN code is built on the four steps of the Source 
Iteration (SI) scheme with the multi-block framework. And the SN and characteristics solver 
kernels are integrated in Step 1, in which we apply the ‘sweep’ process to solve the LBE for 
angular fluxes. ‘Sweep’ is a process to calculate the outgoing flux from the incoming flux for 
a coarse mesh, a fine mesh (SN), or a region (characteristics) by simulating the particle 
transport along certain directions. The fine mesh/region averaged angular fluxes are updated 
during the process. In Step 2, we evaluate the flux moments based on the angular flux 
calculated in Step 1 by a numerical quadrature set, then use the flux moments to update the 
source in Step 3 for next iteration. The iteration process continues until fluxes are converged 
based on a convergence criterion.  

In this chapter, first we introduce the overall block structure of the code. Then, we 
further discuss the transport calculation block, with some details of several key subroutines. 
Finally, the front-line style sweep process is presented.  

3.1 Block Structure 
The TITAN code is composed of three major blocks: input, processing, and output. 

The input block loads the input decks to initialize the model material and the fixed source 
distribution, meshing scheme, and some control variables. The processing block performs the 
transport calculation. And the output block handles the calculation results. In this section, we 
introduce the input and output blocks. The processing block is discussed in the next section. 

The input files include the cross-section data file, and a block-structured input deck, to 
setup some control variables such as quadrature sets and solvers for each coarse mesh. By 
default, the output block writes up the material number, the source intensity and the 
calculated scalar flux for each fine mesh into a TECPLOT-format binary data file. The data 
in this file is organized by coarse meshes. Each data point/fine mesh is composed of an array 
of values: xyz coordinates of the center of the fine mesh, material number and fixed source 
intensity in the fine mesh, and the average scalar flux for each energy group. Comparing to 
the ASCII format of the TECPLOT data file, the binary file is smaller in size and faster to 
load by TECPLOT for various plotting. As an option, the output block can also prepare the 
input deck for the PENTRAN code.  

3.2 Processing Block 
The subroutines in the processing block can be roughly arranged in four levels. The 

lower level routines are called only by the immediate upper level routines. The top level (0th 
level) routines choose the corresponding module for different types of problems (shielding or 
criticality). The first level routines setup the source iteration schemes for all energy groups. 
The second level routines complete one system sweep for all the directions in the quadrature 
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sets for one group. The third level routines only handle one sweep for all the directions in one 
octant for one coarse mesh and one group. Finally on the forth level, we apply the SN or 
MOC formulations discussed in Chapter 2 to calculate the angular flux in one fine mesh (SN) 
or one region (characteristics). Figure 3-1 shows the major subroutines within the four-level 
code structure. In the following sections, we further discuss some of the routines on each 
level. 
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Figure 3-1.  Code structure flowchart.

Within group loop till flux converged 

Ray 

Sn 

 Loop for each direction  in one octant 
 Loop  for each  parallel  ray 

 Loop for each direction  in one octant 

Loop for each FM in the sweep order 

 loop for octant=1, 8 

 Loop for each CM in the sweep order 

L0.1 Input Block

L0. 2 Processing Block 

L0.21 TransCal     L0.22 UpScaCal  L0.3 Output Block

L1.1-3 
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‘ L0.23 or L0.24 k outer loop for criticality problems

L0.22 outer loop for  upscattering 

L0.21 loop : group=1,num_grp 

L1.1 InitSn 

L1.1-4 
InitCMflux 

L1.1-5 
InitProjection 
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CM2Sys 
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On the top level, TITAN has a simple three-block structure: input block, processing block, 
and output block. In the processing block, four kernel subroutines are available for different 
types of problems: 

L0.21 TransCal: fixed source problem with only down scattering. 

L0.22 UpScaCal: fixed source problem with upscattering. 

L0.23 Ksearch: criticality problem with only down scattering. 

L0.24 Ksearch_up: criticality problem with upscattering. 

Based on some parameters from the input block, we choose one of the four subroutines to 
perform the transport calculation. TransCal provides the fundamental loop structure of the 
source iteration scheme. Here, we assume that the source iteration scheme starts from the energy 
group loop. The other three subroutines require one (L0.22 and L0.23) or two (L0.24) additional 
outer loops besides the fundamental source iteration scheme loop structure (L0.21). They are 
designed for problems with upscattering and/or criticality problems.  

3.2.1 First Level Routines: Source Iteration Scheme 

The flowchart on the first level demonstrates the structure of the processing block. The 
subroutines on this level can be illustrated in the following pseudo-code. 

 

Figure 3-2.  Pseudo-code of the source iteration scheme. 

Subroutine L1.1 InitSn is designed to complete the initialization works before the transport 
calculation starts. This initialization includes loading cross section data, allocating memory for 

!! Pseudocode: processing block (TransCal, UpScaCal, Ksearch, Ksearch_up) 

Call InitSn 
Loop outer_k                                   ! k loop(power iteration) if eigenvalue problem 

Loop outer_g                                  ! outer_g loop if upscattering presents 
For g=1, num_group                    ! group loop 

                 call GetInMnt_G(g) 
                 while (flux not converged)      ! within group loop 
                       call SolverSN_L1_S1(g) 
                       call UpdateScaFlx(g) 

                 end within group loop 

end group loop 

 end outer_g loop                           ! if upscattering presents 

    call  FissionSrc                              ! if k loop presents 

End outer_k loop 
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interface fluxes, angular fluxes, and flux moments, and initialization of the quadrature sets and 
projection matrices.  

Subroutine L1.2 GetInMnt_G is called at the beginning of each group loop. And it has 
only one input argument: group index g. GetInMnt_G(g) calculates the flux moment summation 
for all other groups other than group g, which we call scattering-in-moments, or in-moments. In-
moments are used to efficiently calculate the scattering source, which is performed in Step 3 of 
the source iteration scheme. By applying the in-moments, we can rewrite Eq. 2-23 by switching 
the group and Legendre order expansion. 
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defined as zero in-moments, cosine in-moments and sine in-moments. Mathematically, this 
formulation seems more complicated than Eq. 2-23. However, it is more efficient to evaluate 
scattering source. The in-moments can be pre-calculated before the within-group starts, since 
they are independent of group g moments, which are the only changing moment terms between 
the within-group loops. Therefore, once the in-moments are pre-calculated by the subroutine 
GetInMnt_G, the summation process over all groups inside the within-group loop reduces to a 
two-term summation: in-moments plus the group g moments. 

Inside the subroutine GetInMnt_G, we calculate the in-moments for all the coarse meshes. 
If the characteristics solver is assigned to a coarse mesh, Subroutine L1.2-2 GetInMnt_ray is 
called to calculate the in-moments for each region in the coarse mesh. Otherwise, L1.2-1 
GetInMnt_Sn is called to calculate the in-moments for each fine mesh within the coarse mesh. 

Subroutine L1.3 Solver_Sn_L1 is the kernel subroutine on this level, which completes one 
system sweep for a given group g. Its structure is illustrated on the next level. Subroutine L1.4 
UpdateScaFlx is used to calculate the scalar fluxes for the current iteration, and evaluate the 
maximum difference from the previous iteration. Solver_Sn_L1 and UpdateFlx are the two major 
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subroutines of the within-group loop. They are repeatedly called until the maximum scalar flux 
difference between two interations satisfies the user-defined convergence criterion. 

L1.5 FissionSrc is called at the end of each k-effective loop (power iteration) to update the 
fission source and the k-effective for the next power iteration. The fission source is considered as 
an isotropic fixed source for all the other inner loops (within-group loop and upscattering loop). 
Fission source is evaluated for each fine mesh. Then, the k-effective is calculated by using Eq. 2-
25. More advanced formulas derived from power iteration acceleration techniques can be 
investigated and applied within the scope of this subroutine.  

3.2.2 Second Level Routines: Sweeping on Coarse Mesh Level 

The subroutines on this level are called by the kernel subroutine SolverSN_L1_S1 of the 
first level. Two inner loops, octant loop and coarse mesh loop are constructed in 
SolverSN_L1_S1. Its structure can be illustrated in the following pseudo code. 

 

Figure 3-3.  Pseudo-code of the coarse mesh sweep process. 

Subroutines L2.4-1 SolverRay_L2_S1 and L2.4-2 SolverSn_L2_S1 are the kernel 
subroutines, which complete the sweep process within the scope of one coarse mesh for 
directions in one octant and for a given group by using either the characteristics solver or the SN 
solver. The detail structures of the two subroutines are illustrated in the next section. 

Subroutines L2.1 MapBnd2inter and L2.6 MapInter2Bnd are used in the sweep process on 
the system level. The sweep process starts from the three incoming boundaries of the model for 
the directions in a given octant, and ends at the three outgoing boundaries. At the incoming 
surfaces, model boundary conditions need to be applied. And if the outgoing surfaces are 
reflective or albedo boundaries, the outgoing angular fluxes need to be reflected back as 
incoming fluxes for directions in another octant. Therefore, at the beginning of the system sweep 

!! Pseudocode: SolverSn_L1_S1 (group)     !group: energy group index  
For octant=1,  8                                     ! octant loop 
      call MapBnd2inter(octant,group) 

call SweepOrder_cm(octant) 
      for cm_ijk in the sweeping order     !coarse mesh loop 
            if (MOC solver is assigned to cm_ijk)  

call InitCmRay(cm_ijk) 
call SolverRay_L2_S1(cm_ijk, octant, group) 

                call FreeCmRay(cm_ijk) 
           else  

call InitCmSn(cm_ijk) 
call SolverSn_L2_S1(cm_ijk, octant, group) 

                call FreeCmSn (cm_ijk) 
           endif 
      end cm loop 
     call MapInter2Bnd(octant,group) 
end octant loop 
call CalMnt(group) 
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process, MapBnd2inter is called to map the incoming system boundary conditions to a system 
interface flux array, while at the end of the sweep process, MapInter2Bnd is called to map the 
system interface flux back to the model boundary. 

Subroutine L2.2 SweepOrder_CM initializes the coarse mesh sweep order for directions in 
a given octant before the coarse mesh loop starts. Subroutines L2.3 InitCM and L2.5 FreeCM are 
designed to allocate and free memory for the interface flux array within one coarse mesh. More 
details about the interface flux array will be discussed later. Both InitCM and FreeCM have two 
versions corresponding to the characteristics and SN solver kernel. 

Subroutine L2.7 CalMnt is called after the system sweep completes. The subroutine is 
used to evaluate the flux moments (source iteration scheme: Step 2) based on the angular fluxes 
calculated by the system sweep (source iteration scheme: Step 1).  

3.2.3 Third Level Routines: Sweeping on Fine Mesh Level 

Two sets of routines are built on this lowest level for the characteristics and SN solvers, 
respectively. Both calculate angular fluxes within the scope of one coarse mesh, one octant, and 
one group. Their structures can be illustrated by the following pseudo code. 

 

Figure 3-4.  Pseudo-code of the fine mesh sweep process. 

 

!! Pseudocode: SolverSn_L2_S1 (cm_ijk, octant, group) 
call Projection_H0 (cm_ijk , octant)        ! angular projection 
call Projection_D0 (cm_ijk , octant)        ! spatial projection 
call SweepOrder_fm(cm_ijk , octant) 
For direc=1,  num_direc                         ! direction loop within one octant 
      call MapSys2CM(cm_ijk , direc) 
      call GetFmSrc_CMin(cm_ijk, octant, direc, group) 

for fm_ijk in the sweeping order     !fine mesh loop 
   call DiffScheme 

end fine mesh loop         
call MapCM2Sys(cm_ijk , direct) 

end direction loop                 
 
!! Pseudocode: SolverRay_L2_S1 (cm_ijk, octant, group) 
call Projection_H0 (cm_ijk , octant)        ! angular projection 
call Projection_D0 (cm_ijk , octant)        ! spatial projection 
For direc=1,  num_direc                         ! direction loop within one octant 
      call GetZnSrc_CMin(cm_ijk, octant, direc, group) 

for each parallel ray                       ! ray loop 
   call GetBakFlx 
   call GetRayAvg 

end ray loop 
      call GetZnAvg      

call MapCM2Sys(cm_ijk , direct) 
end direction loop            
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Subroutines L3.1 Projection_H0 and L3.2 Projection_D0 complete angular and spatial 
projection procedures. The two subroutines, called within SolverSn_L2_S1 and 
Solver_Ray_L2_S1, remap the incoming flux array onto the same frame (in the angular domain 
and spatial domain) as the current coarse mesh by the projection techniques. Note that here 
angular projection is performed first if both projections are required. 

For the SN solver, Subroutine L3.3 SweepOrder_fm initializes the fine mesh sweep order 
for the following fine mesh loop. L3.4 MapSys2CM and L3.7 MapCM2Sys are similar to their 
counterparts, L2.1 and L2.7, on the second level. However, here we need to map between the 
system interface flux array and the coarse mesh interface array, instead of between the model 
boundaries and the system interface flux array. 

Subroutine L3.5 GetFmSrc_CMin calculates the total source term for each fine mesh 
before the fine mesh loop starts. Within the fine mesh loop, L3.6 DiffScheme is called to 
calculate the outgoing flux and fine-mesh-averaged flux based on the incoming flux by a 
differencing scheme. The diamond-differencing and direction-theta-weighted differencing19 
schemes are implemented. Other differencing schemes can be added into this subroutine.  

The characteristics subroutine set is similar to the SN set with a two-level loop structure: 
direction loop and parallel ray loop, instead of fine mesh loop in the SN solver. L3.8 
GetZnSrc_CMin, as its counterpart L3.5 for the SN solver, calculates the total source term for 
each zone, instead of each fine mesh. For each parallel ray, L3.9 GetBakFlx evaluates the 
incoming flux by the bilinear interpolation scheme. L3.10 GetRayAvg calculates the average 
angular flux for the current ray. After all the parallel ray average fluxes are updated, L3.11 
GetZnAvg is used to calculate the average flux for the zone/coarse mesh. And the coarse mesh 
outgoing flux is mapped back onto the system interface flux array. 

3.3 Data Structure and Initialization Subroutines 
The 4-level code flowchart, as outlined in the previous section, is built on the data 

structure, which organizes of the data arrays, such as angular fluxes and flux moments. In the 
TITAN code, a number of derived data types are defined by applying the paradigm of object-
oriented programming (OOP). These user-defined data objects, such as coarse mesh object, 
quadrature object, and projection objects, are initialized in subroutine L1.1 InitSn at the 
beginning of transport calculation. In recent years, OOP has already evolved into one standard 
paradigm for modern coding language for computer applications. While FORTRAN 90/95, 
designed mainly for scientific computing, generally is not considered as an object-based 
language. However, FORTRAN 90/95 does provide some tools and language extensions to allow 
users to utilize some concepts of OOP. And the OOP support is further enhanced in the new 
FORTRAN 2003 standard. 

In the TITAN code, coarse mesh is treated as a relatively independent object, within 
which a number of parameters, arrays, and sub-object are defined. Among these parameters are 
Solver_ID, Quad_ID, Mat_matrix, Src_matrix, and angular flux and flux moment sub-objects. 
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Solver_ID and Quad_ID specify the solver and quadrature set for the coarse mesh, respectively. 
Mat_matrix and Src_matrix are the material and source distributions within the coarse mesh, 
respectively. And the angular flux and moments for the coarse mesh are defined as sub-objects 
for each group and octant. They are initialized in subroutine L1.1-4 InitCMflux.  

Quadrature set is another essential object, which contains the direction cosine values and 
the weights associated with the directions for each direction in one octant. L1.1-3 CreatQuad 
generates all the quadrature sets with ordinate splitting used in the model. For the level-
symmetric quadrature, direction cosines and weights are preset for quadrature order from 2 to 20. 
For the PN-TN quadrature set, since the quadrature order is not limited to 20 as level-symmetric 
quadrature, directions cosines and weights are pre-calculated by a polynomial root-finding 
subroutine. After one SN or PN-TN quadrature is created, another subroutine is called to build up 
the splitting ordinates on top of the regular quadrature set.  

As described by Eq. 2-43, the projection matrix should be pre-calculated in both spatial 
and angular domain. In the spatial domain, L1.1-5 InitProjection scans all the coarse mesh 
interfaces and analyzes all the projections on the interfaces of coarse meshes. Since a 2-D 
projection is defined by two separated 1-D projections, only a 3 5→ projection matrix is 
necessary for a projection of3 3 5 5× → × . The 2-D projection matrix is built implicitly by the 1-
D component projection matrix. Furthermore, 1-D projection matrix is always stored in pair, e.g. 
3 5→  and5 3→ , because they always happen together on the same coarse mesh interface 
depending the sweeping direction. Note that since the same projection could happen in a number 
of interfaces, it is not necessary to build one projection matrix for every coarse mesh interface. In 
such case, only one projection matrix is stored to reduce the memory cost. And a projection ID is 
assigned to each coarse mesh interface to specify the associated projection matrix. The angular 
projection matrix is built in a similar way, but with a subroutine to find the three closest neighbor 
directions in one quadrature set to every direction in the other quadrature set. Afterwards, the 
three neighboring direction indices and the distance weights are stored in an angular projection 
matrix.  

3.4 Coarse and Fine Mesh Interface Flux Handling  
In the sweeping process, the fine-mesh interface flux propagates along the sweep direction. 

Instead of storing all the interface fluxes for each fine mesh, we only store the fluxes on the 
propagation frontline.  As shown in Figure 3-5, for a 2-D coarse mesh with 4 by 4 fine meshes, 
two one dimensional interface arrays, Inter_x(:) and Inter_y(:), can be allocated to store the 
frontline interface flux, both with a size of 4. 
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Figure 3-5.  Frontline interface flux handling. 

At the beginning of the direction n sweep process, Inter_x and Inter_y are assigned to the 
incoming fluxes at the bottom and left boundary, respectively. This task is completed by 
subroutine L3.3 MapSys2CM. The sweep process starts from FM (1,1) by using Inter_y(1) and 
Inter_x(1) as incoming fluxes. After the average flux for FM(1,1) is updated, we assign the 
outgoing flux for FM(1,1) back into Inter_y(1) and Inter_x(1). And the rest of elements of 
Inter_x and Inter_y remain the same. Therefore, for FM(1,2), Inter_x(1) and Inter_y(2) become 
the incoming fluxes. Generally speaking, for FM(m,n), Inter_x(m) and Inter_y(n) always store 
the incoming fluxes before the sweep begins, and the outgoing fluxes afterwards. For example, 
after the sweep process updates the fluxes for the first 6 fine meshes, the blue line becomes the 
propagation frontline. At this point, Inter_x stores the interface fluxes on the horizontal lines 
along the blue front line, while Inter_y stores all the interface flux on the vertical lines. After all 
the fine meshes are processed, Inter_x and Inter_y store the outgoing fluxes for the coarse mesh 
at the top and right boundaries, respectively. 

The front-line approach to handle the fine-mesh interface fluxes can be extended to the 
sweep process in a 3-D coarse mesh. We use three 2-dimentional arrays to store the interface 
fluxes: Inter_xy(:,:), Inter_xz(:,:), and Inter_yz(:,:), instead of Inter_x(:) and Inter_y(:) in a 2-D 
coarse mesh. The front-line shown in Figure 4-2 becomes ‘front-surface’ in 3-D along x, y and z 
axes.  

The front-line approach is memory-efficient compared to the straightforward process to 
store the interface fluxes for all the fine meshes. Under this approach, only the interface fluxes 
on the marching front-line are stored. For the case shown in Figure 4-2, the frontline approach 
only requires 8 memory units, while 40 memory units are necessary otherwise. For a 3-D coarse 
mesh with i j k× ×  fine meshes, a total of ( 1) ( 1) ( 1)i j k i j k i j k× × + + × + × + + × ×  memory 

Inter_y(:) 

1 

2 

4 

3 

Inter x(:) 1 2 3 4
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units are required if all the interface fluxes are stored. While the front-line approach only 
requires i j i k j k× + × + ×  memory units. Another benefit of the frontline approach is to avoid 
‘memory jumps’ for the fine mesh incoming fluxes during the sweep process. As shown in 
Figure 4-2, the interface flux arrays, Inter_x(:) and Inter_y(:), are always accessed sequentially 
as the frontline marches forward, which is much more efficient than ‘memory jumps’, especially 
when handling large size arrays.  

The same approach can be applied on the coarse mesh sweep process, in which a coarse 
mesh is considered as the finest unit. However, each element of the interface flux array becomes 
another array, or an object, instead of a scalar value as in the fine mesh sweep process. Here we 
use another set of object arrays, called system interface arrays Inter_xy_cm(:,:), Inter_xz_cm(:,:), 
and Inter_yz_cm(:,:), which are similar to Inter_xy(:,:), Inter_xz(:,:), and Inter_yz(:,:). They can 
be considered as an array of arrays, or an array of objects on the system level, which means each 
element in Inter_xy_cm(:,:) is another array, instead of a scalar value as in a regular array. 
Inter_xy_cm(:,:) represents the front-line coarse mesh fluxes on the xy plane in the global sweep 
process, as Inter_xy(:,:) represents the front-line fine mesh fluxes in a coarse mesh sweep 
process. The system interface arrays are initialized by Subroutine L1.1-2 InitInter, and connected 
to coarse mesh interface flux arrays by subroutines L3.3 MapSys2CM and L3.7 MapCM2Sys, 
which performs two mapping actions: 

• Mapping one system array element to the corresponding coarse mesh interface array as the 
coarse mesh incoming flux before the fine mesh sweep process starts.  

• Mapping the coarse mesh interface array back onto the system array element afterwards as 
the outgoing flux. 
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Chapter 4 – I/O Structure 

TITAN requires two input files: an input deck to define model geometry, transport 
parameters etc; and a cross section data file. The input deck file name can be specified at 
command line by using ‘-n’ option. By default, the file name is ‘titan.inp’. The cross 
section data file name is specified in the input deck with keyword ‘xsfile’.  

4.1 Input Structure 
TITAN input deck uses a ‘section-keyword’ free style of format. The input deck 

contains several sections, and each section accepts a number of keywords. Several 
keywords can be specified in one line, and the entries for one keyword can be spread out 
to several lines. An input deck can be prepared manually or by the PENMSHXP utility 
code (Ref. 21). 

4.1.1 General Parameters 

The first section is to define some general parameters.  

  

#0  /general transport parameter quadrature 
/acceptable keywords: nquad, tquad, oquad, splitq(multi), ncmesh, numsrc, nummat, numgrp 
/ nquad: number of quadratures. 
/ tquad: type of quadratures, NumOfEntry=nquad (0=LevelSym, 1=LegendreCheby) 
/ oquad: order of quadratures, NumOfEntry=nquad (even number) 
/ splitq: ordinate splitting setup 
/   splitq=QuadId, #Splitting, SplitDirIDs, SplitOrders, SplitType, Topnums, alpha 
/   QuadId=1, 2,..or nquad, #Splitting=num of splitting directions 
/   #Splitting= total num of splitting directions in QuadID 
/   SplitDirIDs=splitting direction IDs in the base quadrature,NumOfEntry=#Splitting 
/   SplitOrder=splitting order for each splitting direction,NumOfEntry=#Splitting 
/   SplitType: 0=rectangular, 1=Pn-Tn, 2=circular, NumOfEntry=#Splitting 
/   Topnum: rectangular: unused; Pn-Tn: Num of dirs on top level; circular: # of circles.  
/  NumOfEntry=#Splitting 
/   alpha: rectangular/Pn-Tn: unused (angular range for future version); circular: derail angle.  
/   NumOfEntry=#Splitting 
/ ncmesh: # of coarse mesh along x, y ,z . NumOfEntry=3 
/ numsrc: # of sources . NumOfEntry=1 
/ nummat: # of materials . NumOfEntry=1 
/ numgrp: # of groups . NumOfEntry=1 

 
ncmesh=3  3  3 
numsrc=1 
nummat=3 
numgrp=1 
nquad=1 
tquad=1 
oquad=60: 
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On the first line of the above example, ‘#0’ marks Section 0. The following lines 
are comment lines, which are marked with ‘/’. The keywords used in this example are 
explained as follows. 

‘ncmesh’ is the number of coarse meshes along x, y, and z axis. Three entries are 
required for this keyword. In this case, the model contains 3x3x3 coarse meshes. 

‘numsrc’ is the number of coarse meshes containing fixed sources. In this example, 
one of the 3x3x3 coarse meshes contains fixed source. 

‘nummat’ is the number of materials in the model 

‘numgrp’ is the number of energy groups 

‘nquad’ is the number of quadrature set used in the model. In this example, only 
one quadrature is uniformly used for every coarse mesh.  

‘tquad’ is the type of quadrature sets. The number of entries equals to ‘nquad’. 
Two types of quadrature set are available. Type 0 is the level symmetric quadrature set. 
Type 1 is the Pn-Tn quadrature set.  

‘oquad’ is the order of the quadrature sets. The number of entries equals to ‘nquad’.  

Another keyword available for this section, but not included in the example, is 
‘splitq’, which is used to specify ordinate splitting parameters. 

4.1.2 Geometry Parameters 

Some model geometry parameters and coarse mesh properties are defined in this 
section 

 
This section is marked by ‘#1’.  

#1  /Section 1 : Geometry setup 
/acceptable keywords: dcpara, xcmbnd, ycmbnd, zcmbnd, cmxfin, cmyfin, cmzfin, 
cmsolv,cmdiff,cmquad 
/ xcmbnd, ycmbnd, zcmbnd: x,y,z coarse mesh boundaries, NumOfEntry=ncmesh+1 
/ cmxfin, cmyfin, cmzfin: fine mesh number along x,y,z for each coarse mesh, 
NumOfEntry=TotNumOfCM 
/ cmsolv: solver ID for each corase mesh, 0=Sn, 1=Characteristics 
/ cmdiff: Differencing Scheme ID for each corase mesh, 1=DD with fixup, 2=DTW 
/ cmquad: Quadrature ID for each coarse mesh, available values=1,2,... or nquad 
 
xcmbnd= 0.00000E+00  5.00000E-02  9.50000E-01  1.00000E+00 
ycmbnd= 0.00000E+00  5.00000E-02  9.50000E-01  1.00000E+00 
zcmbnd= 0.00000E+00  2.50000E-01  4.75000E+00  5.00000E+00 
cmxfin=6 18 2R6 18 2R6 18 2R6 18 2R6 18 2R6 18 2R6 18 2R6 18 2R6 18 6 
cmyfin=3R6 3R18 6R6 3R18 6R6 3R18 3R6 
cmzfin=9R6 9R72 9R6 
cmsolv=27R0 
cmdiff=27R1 
cmquad=27R1 
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‘xcmbnd’ specifies the coarse mesh boundary positions along x axis. The number 
of entries equals to the number of coarse mesh along x axis (defined in #0 section by 
‘ncmesh’) plus one. The unit of entries is centimeter 

‘ycmbnd’ specifies the coarse mesh boundary positions along y axis. The number 
of entries equals to the number of coarse mesh along y axis (defined in #0 section by 
‘ncmesh’) plus one. 

‘zcmbnd’ specifies the coarse mesh boundary positions along y axis. The number 
of entries equals to the number of coarse mesh along z axis (defined in #0 section by 
‘ncmesh’) plus one. 

‘cmxfin’ specifies number of fine meshes along x for all the coarse meshes. The 
number of entries equals to the number of coarse meshes. Coarse meshes are ordered in a 
way similar to storing a 3-dimension array in FORTRAN. The 3 dimensions are x, y and 
z. For example, for a coarse mesh array cm(3,3,3), the first coarse mesh is cm(1,1,1), the 
second one is cm(2,1,1), and so on. Note that FIDO characters ‘R’ is used in this example. 
‘mRn’ means ‘repeat number n for m times’. If a ray-tracing solver is assigned to a coarse 
mesh, the fine-meshing is built only on the coarse mesh boundaries. See Section 2.6 for 
details. 

‘cmyfin’ specifies number of fine meshes along y axis for all coarse meshes. 

‘cmzfin’ specifies number of fine meshes along z axis for all coarse meshes. 

‘cmsolv’ specifies the solver for each coarse meshes. Currently two solvers are 
available: Solver 0 is the Sn solver, and Solver 1 is the ray-tracing solver. 

‘cmdiff’ specifies the differencing scheme used for each coarse mesh. Currently 
two types of differencing scheme are available. Type 1 is zero-fixed-up diamond, and 
Type 2 is Directional Theta Weighted.  

‘cmquad’ specifies the quadrature set used for each coarse mesh. Quadrature sets 
are numbered from 1 to ‘nquad’. Each coarse mesh is assigned a quadrature set ID. 

4.1.3 Material Distribution 

This section, marked by ‘#2’, specifies the material distribution for each coarse 
mesh. Each material is assigned a material ID from 1 to ‘nummat’ according to the order 
of its appearance in the cross section data file.   
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#2  /Section 2 : Fine mesh mat. number 
/ cmmatn=CM#, mat # for each fine mesh in this CM 
cmmatn=1  
216R3 
cmmatn=2  
648R1 
cmmatn=3 
216R1 
cmmatn=4 
648R1 
cmmatn=5 
1944R1 
cmmatn=6 
648R1 
cmmatn=7 
216R1 
cmmatn=8 
648R1 
cmmatn=9 
216R1 
cmmatn=10 
2592R1 
cmmatn=11 
7776R1 
cmmatn=12 
2592R1 
cmmatn=13 
7776R1 
cmmatn=14 
23328R2 
cmmatn=15 
7776R1 
cmmatn=16 
2592R1 
cmmatn=17 
7776R1 
cmmatn=18 
2592R1 
cmmatn=19 
216R1 
cmmatn=20 
648R1 
cmmatn=21 
216R1 
cmmatn=22 
648R1 
cmmatn=23 
1944R1 
cmmatn=24 
648R1 
cmmatn=25 
216R1 
cmmatn=26 
648R1 
cmmatn=27 
216R1 
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The first entry of ‘cmmatn’ is the coarse mesh number, followed by a sequence of 
material IDs for each fine mesh (Sn solver) or region (ray-tracing solver) in this coarse 
mesh. If a ray-tracing solver is assigned a coarse mesh, only one material region is 
allowed currently. The ordering of fine meshes in a coarse mesh follows the same 
convention as the coarse mesh ordering. For a coarse mesh with 6x6x6 fine meshes, the 
material IDs for each fine mesh will be stored in a three dimensional array: fm(6,6,6), 
where fm(1,1,1) will be the first fine mesh, fm(2,1,1) will be the second, and so on. 

Another keyword available in this section is ‘fmsize’. Similar to ‘cmmatn’, the 
first entry for ‘fmsize’ is the coarse mesh number, followed by a sequence of entries of 
fine mesh size along x axis, then a sequence of entries of fine mesh size along y axis, then 
along z axis. This keyword is optional and used to specify non-uniform fine size along an 
axis. If this keyword is present, fine mesh size is uniform along any axis. 

4.1.4 Source Distribution 

This section, marked by ‘#3’, specifies the source distribution for any coarse mesh, 
where a source is present. 

 
‘srcloc’ specifies the coarse meshes where a fixed source is present. The number of 

entries equals to ‘numsrc’ defined in Section 0.  

‘srcmag’ specifies the source magnitude for each source. The number of entries 
equals to ‘numsrc’. 

‘srcspm’ specifies the source spectrum. The number of entries equals to ‘numsrc’ 
multiplied by ‘numgrp’. 

‘srcdis’ specifies the source distribution in a coarse mesh. Similar to ‘cmmatn’, the 
first entry is source ID number, followed by a sequence of source density for each fine 
mesh. For example, srcmag*srcdis(3,3,3)*srcspm(1) is the source density for fine 
mesh(3,3,3) and for Group 1. Currently, fixed sources can only be defined in a Sn solver 
coarse mesh. 

#3  /Section 3 : src distribution 
/acceptable keywords: srcloc, srcmag, srcspm, srcdis (multi), keffin 
/ srcloc: source location (CM number where source located), NumOfEntry=numsrc 
/ srcmag: source strength (srcmag*srcdis=src density in that fm, #/cm3-sec), 
 / NumOfEntry=numsrc 
/ srcspm: source spectrum (srcmag*srcdis*srcspm=src density for a group), 
NumOfEntry=numsrc*numgrp 
/ srcdis: source spatial distribution  srcdis=Src#, FineMeshDist 
/ keffin: initial Keff guess, NumOfEntry=1, (more entries reserved for future Keff accelaration 
 
srcloc=1 
srcmag=2.16000E+02 
srcspm=1.000E+00 
srcdis=1 
216R4.62963E-03 
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Another keyword, ‘keffin’, is to specify the initial k-effective. If ‘keffin’ is present, 
the above keywords are ineffective.  

4.1.5 Cross Section Parameter 

This section, marked by ‘#5’, specifies the cross section data parameters. 

 
‘xsname’ specifies the cross section data file name. Currently, TITAN uses an 

ASCII row format xs data file, same as the format used by PENTRAN (type 0 and 1). 
The following is a sample template for a 3-group library with down-scattering only. 

 
For every Pn order of each material, a data section is used. Sections are separated 

by comment line(s). The number of comment lines between sections is specified by 
keyword ‘numcmt’. The number of rows in each section equals to the number of group. 
For a P0 section, the first three columns are macro absorption cross section, 
nu*sigma_fission, and total cross section. For the higher Pn order data, the first three 
columns are not used, but they should be filled with zeros. The rest of the columns are the 
scattering matrix. For downscattering only data, the group self scattering is located in 
Column 4.  

The following is a sample template for a 3-group library with upscattering.  

/material 1 P0 
/sig-a    vsig-f     sig-t      sig-s scattering matrix 
                                        1->1   
                                        2->2        1->2 
                                        3->3        2->3     1->3 
  /material 1 P1 
/sig-a    vsig-f     sig-t      sig-s scattering matrix 
                                        1->1   
                                        2->2        1->2 
                                        3->3        2->3     1->3 

……. 

#4  /Section 4 : xs data 
/acceptable keywords: xsname, xstype, numcmt, xstihm, xstihs,xstiht, legord, legoxs,xstchi 
/ xsname: cross section file name (charater entry) 
/ xstype: 0=(2l+1) is not pre-multiplied; 1=(2l+1) pre-multiplied 
/ numcmt: number of comment lines in between material xs block 
/ xstihm: xs table total length, (SigmaTot@Column 3 always 
/   xstihm=3+numgrp:  SigmaSelfScatter@4 , downscattering only 
/   xstihm=3+(2*numgrp-1):  SigmaSelfScatter@(3+numgrp) , upperscattering 
 
xsname=ps.xs 
legord=0  legoxs=0 
xstype=1 
xstihm=4 
xstchi=3R1.0000E+00 
numcmt=1 
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For upscattering xs data, the group self-scattering xs is located in column 3+ 

‘numgrp’.  

‘legord’ specifies the transport calculation Pn order, and ‘legoxs’ specifies the Pn 
order of the cross section file. ‘legord’ should not be greater than ‘legoxs’.  

‘xstype’ specifies the xs type. In a Type 0 xs file, (2l+1) is not factored in the 
scattering matrix for Pn order greater than 0 sections, while in a Type 1 xs file, (2l+1) is 
pre-multiplied.  

‘xstihm’ specifies the total number of columns in the xs file. TITAN uses this entry 
to decide along with ‘numgrp’ to decide if ‘upscattering’ data is present in the xs file.  

‘xstiht’ and ‘xstihs’ are optional, and used to specify the column number of the 
total xs and the self-scattering xs. 

‘xstchi’ specifies the fission chi data. The number of entries equals to ‘numgrp’ 
multiplied by ‘nummat’. 

‘numcmt’ specifies the number of comment lines between sections in the xs file. 

4.1.6 Boundary Condition 

This section, marked by ‘#5’, specifies the boundary conditions and some iteration 
control parameters. 

 

#5  /Section 5 : boundary cond. and tol. 
/acceptable keywords: tolinn,tolout,maxinn,maxout,xminus,xpluss,yminus,ypluss,zminus,zpluss 
/ tolinn: inner iteration (within-group) tolerance, negative value: adjustable for keff loop 
/ tolout: outer iteration (keff loop) tolerance, negative value: adjustable for keff loop 
/ maxinn: maxium inner iteration number, negative value: adjustable for keff loop 
/ maxout: maxium outer iteration number, negative value: adjustable for keff loop 
/ xminus,xpluss,yminus,ypluss,zminus,zpluss : Boundary conditions at -x,+x, -y,+y, -z,+z 
/   =0: vaccum;  =1 albedos for each group: reflective 
xminus=0 
xpluss=0 
yminus=0 
ypluss=0 
zminus=0 
zpluss=0 
tolinn= 1.00000E-03 
tolout= 1.00000E-05 
maxout=10 
maxinn=150 

/material 1 P0 
/sig-a    vsig-f     sig-t      sig-s scattering matrix 
                                        3->1        2->1     1->1   
                                                        3->2     2->2        1->2 
                                                                    3->3        2->3     1->3 

……. 
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Two boundary conditions are supported: vacuum and reflective (albedo) on the six 
surfaces of a problem model.  

‘xminus’ specifies the boundary condition on the ‘x-‘ surface. ‘xminus=0’ 
specifies a vacuum boundary, and ‘xminus=1’ specifies a reflective boundary, followed 
by a sequence of albedos for each group.  

‘xpluss’, ‘yminus’, ‘ypluss’, ‘zminus’, and ‘zpluss’ are the boundary conditions for 
the other five surfaces. 

‘tolinn’ is inner iteration (within-group) tolerance, and ‘tolout’ is outer iteration (k-
effective) tolerance 

‘maxout’ is the limit of outer iteration number, and ‘maxinn’ is the limit of inner 
iteration number. 

4.1.7 SPECT Section 

This section, marked by ‘#10’, is optional, and is used for simulation of SPECT 
projection images. 

 
‘numang’ specifies the number of projection angles. 

;iniang’ is the rotation starting angle in the unit of degree. 

‘endang’ is the rotation end angle in the unit of degree. The interval between 
‘iniang’ and ‘endang’ will be uniformly divided into ‘numang’ angles. 

‘vexaxs’ is a vector to specify the rotation axis. 

 ‘posaxs’ is the origin of ‘vexaxs’ vector 

‘radius’ is the rotation radius 

#10  /Section 10 (Optional) : SPECT 
/acceptable keywords: numang,iniang,endang, vecaxs, posaxs, radius, sptcir,detsiz 
/ numang: number of projection angles 
/ iniang, endang: rotation starting and endding angles in degree 
/ vecaxs: rotation axis vector, NumOfEntry=3 
/ posaxs: position of rotation vector, NumOfEntry=3 
/ radius: rotation radius 
/ sptcir: circular splitting for collimators 
/   =splitting order(num of dir on one circle), number of circles, collimator angle 
/ detsiz: detector size along x and y, in cm and pixels 
/   =x-size(cm), y-size(cm), #OfPix along x, #ofPix along y 
 
numang=180 
iniang=-9.00000E+01 
endang= 2.70000E+02 
vecaxs= 0.00000E+00   0.00000E+00   1.00000E+00 
posaxs= 2.00000E+01   2.00000E+01   2.00000E+01 
radius= 3.00000E+01 
sptcir=3  1 1.15350E-02 
detsiz= 4.00000E+01   4.00000E+01  128  128
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‘sptcir’ is optional, and used to specify the circular ordinate splitting parameters. 
There are three entries for this keyword. The first entry is the number of directions on one 
circle; the second entry is the number of circles. The third entry is the radius of the 
outermost circle in ‘radian’, and it can be interpreted as the collimator acceptance angle. 
For details of SPECT simulation, see Ref. 4 

This section is designed for SPECT simulation, but it basically asks TITAN to 
calculate angular fluxes on the model boundary for any given directions. Therefore, it can 
be applied to any problem as if to ‘take pictures’ of the model from any angle. 

4.2 Output Files 
The following table lists the main output files of TITAN. 

File name File Description 

read.log Input processing log 

prbname_solver.log Transport calculation log 

Prbname_mix.plt TECPLOT binary data file, contains all the material, source and 
calculated flux distributions 

Prbname_mix.mcr TECPLOT macro file,  used in TECPLOT to generate various 
plots  

Prbname_quad.dat ASCII file, quadrature set information 

Most of ASICC output files are self-explained. By default, TITAN only output the 
scalar flux distribution for all groups into a TECPLOT binary data file. TECPLOT is 
used to open the binary data file, and make various plots of the calculated results. If 
TECPLOT is not available, users can use ‘-flx’ option to dump the fluxes into a series of 
ASCII file, named prbname<grp#>.flx. Users can use their preferred utility software to 
plot the data in these ASCII files. PENMSHXP also can be used to post-processing 
the .flx files. Users can also use ‘-d’ option in the command line to dump all the flux 
moments into a binary file. This binary file can be used in a continuous run with the ‘-c’ 
command line option.  

4.3 Command Line Options 
TITAN can take a number of command options as listed in following table 

Option Arguments Description 

-i Folder name Specifies the input deck and xs data file directory, 
default is the current directory 

-n Input deck file name Specifies input deck file name, default is titan.inp 
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-h N/A Displays a ‘help’ screen 

-adj N/A Adjoint calculation 

-flx N/A Outputs .flx files (scalar flux distribution) 

-d N/A Dumps the flux binary in a binary file named 
‘prbname.mnt’ 

-c N/A Specifies a continuous run, ‘prbname.mnt’ should be 
present in the current directory. 

 

‘-adj’ option specifies an adjoint calculation. TITAN automatically flips multi-
group xs data and transposes the scattering matrix. But it is users’ responsibility to 
reverse the source spectrum specified in the keyword of ‘srcspc’. And users should aware 
that the calculated group fluxes are flipped as well. i.e. The last group flux actually is the 
first group flux. TITAN is designed this way to increase the users’ awareness of an 
adjoint calculation. Users can use PENMSHXP to flip the flux back into the right order.  
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APPENDIX A – Scattering Kernel in Linear Boltzmann Equation 

Introduction 

In the discretized form of the linear Boltzmann equation (Eq. 2-1), the scattering 
kernel is the most complicated term. In this appendix, we will prove the following 
formulation:  
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In Eq. A-1, the discretization in energy domain can be easily separated with the 
discretization in the angular domain. The energy and spatial dependency of the scattering 
source on the left hand side is represented by the flux moment terms ( )(,' rk
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. For simplicity, we drop the energy group index (g’ and g) 

and spatial dependency ( rr ) in the flux moment terms and the cross section moment term. 
Furthermore, instead of an infinitive Legendre expansion order, we assume a maxim 
expansion order of L. With above simplifications, we can rewrite the formulation to be 
proved: 
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From now on, we also use the following denotations: 

),(),(ˆ ϕμϕθ →→Ω , and )','()','('ˆ ϕμϕθ →→Ω                                          (A-3) 

Where θ is the polar angle with x axis, φ is azimuthal angle on the y-z plane, and 
)cos(θμ = , )'cos(' θμ = . The integration over the unit sphere becomes 
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ddd . In some references, for simplicity one can also use 
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ϕ ddd . However, we found it is not necessary to make such 

assumption, and it could cause some confusion in the spherical harmonic expansion. So 
here we still respect the mathematical fact that the overall solid angle is 4π. Note that 
with or without this assumption, the formulation of Eq. A-2 should remain the same.  

In order to prove Eq. A-2, we need to expand the angular flux and the cross section into a 
series of Legendre polynomials in the angular domain, respectively. In this appendix, we 
provide such an expansion for both the angular flux and cross section. By substitute the 
two expansion series into the left hand of Eq. A-1, we can evaluate the new terms, and 
finally prove the scattering kernel formulation.  

 

Spherical Harmonic Expansion of the Angular Flux 

In this section, we also demonstrate how and why the cosine and sine flux 
moments are defined. A smooth function defined on the surface of a unit sphere, such as 
the angular flux )','()'ˆ( ϕμψψ =Ω , can be expanded by the spherical harmonic function.  
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The general form of the spherical harmonic function )','( ϕμm
nY  is defined by: 
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Where )'(μm
nP is the associated Legendre polynomial. The coefficient m

na is given by: 
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Where ),( ϕμm
nY  is the complex conjugate of ),( ϕμm

nY . 

The angular flux expansion defined by Eq. A-4 should be a real value. So we expect the 
imaginary part of Eq. A-4 is zero. In order to prove this, we rewrite Eq. A-4 as following: 

)]}','()','([)','({)','()','(
0 0 1

00 ϕμϕμϕμϕμϕμψ m
n

m
n

n n

n

m

m
n

m
nnn

n

nm

m
n

m
n YaYaYaYa −−

∞

=

∞

= =−=

++==∑ ∑ ∑∑    

                                                                                                                                      (A-7) 



 

59 
 

Based on Eq. A.5, we have: 
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By applying the following identity of the spherical harmonic function,  
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Note in Eq. A-10, we also apply the following identity of the associated Legendre 
polynomial.49 
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According Eqs. A-9 and A-10, the last term in Eq. A-7 can be rewritten as:  
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We substitute Eq. A-12 back to Eq. A-7, 
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Here we denote the real part of )','( ϕμm
n

m
n Ya  as )]','(Re[ ϕμm

n
m
n Ya . As we expected, the 

angular flux is always a real value according Eq. A-13. Now we can further calculate the 
two terms in Eq. A-13 based on Eqs. A-5 and A-6. The second term is: 
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And the first term is: 
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If we define the regular flux moment, cosine moment and sine moment as follows. 
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We can rewrite Eqs. A-14 and A-15 as follows. 
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By substituting Eqs. A-19 and A-20 into Eq. A-13, finally we derive the expansion 
formulation for the angular flux. 
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One may notice that Eq. A-21 looks similar to Eq. A-4, which is the formulation 
we need to prove. However, further derivations are still required to reach Eq. A-4. After 
the integration, 'μ and 'ϕ  disappear on the right hand side of Eq. A-4. And only μ and ϕ  
dependencies are left. At this point, Eq. A-21 is only a function of 'μ and 'ϕ . Here we 
intentionally use n and m as the index, so that we can distinguish them with l and k, 
which we will use in the next section while expanding the cross section term.  

The flux moment formulations, Eqs. A-16 to A-18, are equivalent to Eqs. 2-2 to 2-
4 we discussed in Chapter 2. Note a 4π factor is used in these formulations. 

Scattering Cross Section Expansion and the Spherical Harmonic Addition Theorem 

The cross section term in Eq. A-2 can be written as follows. 
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Since the cross section only depends on the scattering angle. With the notations in Eq. A-
3, we can derive the formulation for Ω⋅Ω= ˆ'ˆ

0μ . 
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With Eq. A-25, we can apply the spherical harmonic addition theorem.  
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Now we can expand Eq. A-22 with the Legendre polynomial. 
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Note we use the 4π factor in Eq. A-27, because usually we assume 0,sσ is the total 

scattering cross section. So in case of isotropic scattering, the differential cross section 

becomes 
π
σμσ
4

)( 0
s

s = . 

 

Formulation of the Scattering Kernel 

So far we have expanded the angular flux with the spherical harmonic function, 
and the scattering cross section with the Legendre polynomial. In this section, we 
multiply the two terms together and complete the angular integration. Eventually Eq. A-2 
is derived.  

We begin with rewriting the two expansion formulations (Eqs. A-21 and A-27) and 
limiting the expansion order to L. 

}])'sin( )')[cos('(
)!(
)!(2)'(){12(

)','(

0
,,

1
∑ ∑
= =

+
+
−

++

=
L

n

m
nS

m
nC

m
n

n

m
nn mmP

mn
mnPn φϕφϕμφμ

ϕμψ
              (A-28) 

})]'sin()sin()'cos())[cos('()(
)!(
)!(2

)'()({
4

12)(

1

0
,0

∑

∑

=

=

+
+
−

+
+

=

l

k

k
l

k
l

L

l
lllss

kkkkPP
kl
kl

uPuPl

ϕϕϕϕμμ

σ
π

μσ
                             (A-29) 

When we evaluate ∫ ∫
+

−
⋅⋅

π
μμσϕμψμϕ
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1

1
)'()','('' sdd  using Eqs. A-28 and A-29, all 

the μ and φ terms can be moved out the integration, and obviously a lot of multiplication 
terms will appear. Most of the terms become zero. Among the zero terms, some of them 
are erased by the orthogonal property of Legendre polynomials, others are scratched off 
by the facts that: 
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We will identify these terms step by step. Here, we refer to the term nnP φμ )'(  in 

Eq. A-28, and the term )'()( uPuP ll  in Eq. A-29 as ‘the first part’ of the respective 
equation, and the summation term over m or k in both equations as ‘the second part’. 
Now we can apply the orthogonal property of the regular Legendre polynomials. 
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Where 
⎩
⎨
⎧ =

=
otherwise

nl
ln      0

      1
,δ  

Therefore, all the first part multiplication terms become zeros except for those n=l. 
Now we consider the first part of Eq. A-28 multiplied by the second part of Eq. A-29 
(the summation term over m). One can observe that these terms become zeros because of 
Eq. A-30. Similarly, the terms, acquired by multiplying the second part of Eq. A-28 with 
the first part of Eq. A-29, become zeros as well.  

So far the terms we have not covered are the multiplications of the second parts 
from both Eqs. A-28 and A-29. A common mistake one might make is to assume 
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l CuPPd δδμμ . The assumption is very convenient here. Unfortunately, 

such strict orthogonal relationship for the associated Legendre polynomials can not hold 
for arbitrary l, k, n, and m. However, a relaxed version is always true.49 
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In order to apply Eq. A-32, we need to notice the facts that: 
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By using Eqs. A-33 and A-34, we are able to remove all the terms except the terms 
of )'cos()'cos( ϕϕ mk and )'sin()'sin( ϕϕ mk  with k=m. Then, we can apply Eq. A-32 on all 
the remaining terms. In the end, we can conclude that only the terms with k=m and l=n 
will survive among all the second part multiplication terms. 

Based on the above explanations, we can write the scattering kernel with all the 
remaining terms by combining Eqs. A-31 to A-34. Finally, we have proved Eq. A-2. 
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Summary 

The energy dependency and its integration can be introduced back into Eq. A-35. 
And we acquire the multigroup form of the scattering kernel. In the TITAN code, we 
apply the scattering-in moment form by switching the summation over the group and 
Legendre order (Eq. 4-1). The switching seems meaningless mathematically. However, it 
can generate significant benefits in the coding practice. Further discussions on the 
scattering-in moment form are already given in Chapter 4. 

In Eq. A-35, the direction ),( ϕμ , which is the particle moving direction after a 
scattering reaction, is not required to be one of the directions in a quadrature set, although 
this happens to be true in the sweep process with a regular quadrature set. Mathematically,

),( ϕμ  can be an arbitrary direction in Eq. A-35. We take advantage of this fact in the 
fictitious quadrature technique we developed in Chapter 6, and also the ordinate splitting 
technique in Chapter 2. It is not evident to claim that the scattering source evaluated by 
Eq. A-35 on regular quadrature directions has a higher accuracy than on an arbitrary 
direction. Nevertheless, the flux moments are always calculated with a regular quadrature 
set to conserve the integrations in Eqs. A-16 to A-18. 
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APPENDIX B - Numerical Quadrature on Unit Sphere Surface 

Introduction 

In the process of solving the linear Boltzmann equation, flux moments need to be 
evaluated in order to calculate the angular-dependent scattering source term. Flux 
moment (Eqs. 2-2 to 2-4), by its mathematical nature, is nothing but an integration of a 
function defined on a unit sphere surface. The function is the angular flux multiplied by a 
corresponding regular or associated Legendre polynomial. Flux moments become angular 
independent after the integration over the surface of a unit sphere. The exact distribution 
of the angular flux on the unit sphere is unknown. However, we can evaluate function 
values of the angular flux by the sweep process at a given number of points (‘discrete 
ordinates’) on the unit sphere.  Positions and associated weights of these points are 
prescribed by a quadrature set. Then, the flux moments can be simply calculated by a 
summation of the function values multiplied the associated weights. 

Quadrature is a simple but powerful numerical integration technique. For example, 
a Gaussian quadrature with an order of N, can acquire the exact value of the integration 
of any polynomial up to order of 2N-1 defined within [-1, +1].  In our case, the 
integration domain is the surface of a unit sphere. Thereby, we need to build a quadrature 
to evaluate a double integration. Mathematically, a good quadrature of a given order 
always tends to conserve the integration to the highest order. However, the property of 
symmetry of a quadrature generally plays a significant role in a physical problem. For 
example, in a problem with reflective boundaries, we obviously hope all reflected 
directions of a given direction are also in the quadrature set. Therefore, we often build a 
quadrature on the balance between keeping symmetry and conserving higher order 
integration. For example, the level-symmetric quadrature with an order of N can conserve 
moments only up to the Nth order, but with an excellent symmetry property of rotation 
invariance. The Legendre-Chebyshev quadrature can conserve moments up to the 2N-1, 
but rotation invariance is slightly disturbed.  

In this appendix, we prove that the Legendre-Chebyshev quadrature is the best 
choice in regards to conserving higher moments. Through the discussion of the procedure, 
hopefully we can cast some insights on how a quadrature is built on the balance of simple 
mathematics and physics for transport calculations. 

General Quadrature Theorem 

The popular Gaussian quadrature is built on the orthogonal Legendre polynomial, 
which is defined on [-1, +1] with a weighting function w(x)=1. In general, we can 
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consider }{ 0n | )( ≥xnϕ as the orthogonal polynomials defined on (a, b) with a weighting 
function of bxaxw <<≥ for    0)( . According to the orthogonality property, we have: 
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And the integral of a function f(x) can be represented by an n’th quadrature formula: 
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For a given number of nodes, we choose the node positions {xj,n} and weights {wj,n} 
in hoping that we can conserve Eq. B-2 as accurate as possible for any f(x). 
Mathematically, if we assume f(x) is a polynomial, this means that the positions and 
weights of the nodes can hold the integration exactly as the true value to the highest order 
of the polynomial. In this sense, the nodes and weights can by calculated with Theorem 
B-1, which is the fundamental guide for building the Legendre-Chebyshev quadrature. 

Theorem B-1:   

For each 1≥n , there is unique numerical integration formula of degree of precision 2n-

1, Assuming f(x) is 2n times continuously differentiable on [a , b], the formula for In(f) 

and its error is given by  
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For some ba <<η . The nodes {xj} are the zeros of )(xnϕ , and the weights {wj} are 

given by: 
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Legendre-Chebyshev Quadrature on Unit Sphere 

Theorem B-1 lays the foundation for building a quadrature set for one-dimensional 
integration. In order to apply the theorem for a function defined on a unit sphere, we need 
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to separate the two-dimensional integration of the angular flux into two one-dimensional 
integrations. 

In general, we consider ),( ϕμf  is a real smooth function defined on a unit sphere 
surface, where 11   , ≤≤− μμ , is the cosine of the polar angle, and πϕπϕ +≤≤-  ,  is 
the azimuthal angle. We need to estimate: 
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First we define a function of )(μg : 
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The integration defined by Eq. B-7 can be estimated by a Gaussian quadrature, 
since the weighting function is 1)( =xw . Based on Theorem B-1, we choose the 
quadrature nodes }{ iμ as the roots of the N’th Legendre polynomial.  

0)( =iNP μ                                                                                                               (B-8) 

Note we usually choose N as an even integer, so that the roots are symmetrically 
distributed on the axis. The weights }{ iw can be calculated by Eq. B-4. Next we need to 

determine the function values of )}({ ig μ . )( ig μ  itself is an integration over a unit circle 
defined by Eq. B-6. And it can be estimated by another quadrature, in which we still 
prefer that the quadrature nodes are symmetrically distributed on the four quadrant of a 
unit circle. Thereby, we separate the integration defined by Eq. B-6 into two parts: 
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Now we can consider only the integration over the first half of the unit circle, since 
nodes on the other half of the circle are decided by symmetry. We denote 

),()( ϕμϕ ifg =  and )cos(ϕη = . The first part of Eq. B-9 can be rewritten as: 
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Note here 
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In Eq. B-10, 
21

1)(
η

η
−

=w is the weighting function for Chebyshev polynomial 

))arccos(cos()( xnxTn ⋅= . Thereby, we are required to choose the Chebyshev quadrature 
to evaluate the integration defined by B-10, so that we can precisely estimate the 
integration if )(ηh is a polynomial up to the order of 2n-1.  Usually, we choose an even 
integer for n, because we can keep the symmetry on the top half of the unit circle. Figure 
B-1 shows the roots of T4(x) on the unit circle. 

 
Figure B-1.  Chebyshev roots (N =4) on a unit circle. 

The x coordinates of Z1-Z4 are the roots of T4(x). For an even order Chebyshev 
polynomial, Z1 and Z2 are symmetric to Z3 and Z4 respectively. Z5-Z8 are intentionally 
selected to keep symmetry. As a result, Z1-Z8 are symmetrically distributed over the four 
quadrants. Furthermore, the Chebyshev roots are uniformly located on the unit circle, and 
they are equally weighted by Eq. B-4.  

By combining Eqs. B-7 and B-10, the Legendre-Chebyshev quadrature can be built 
on a unit sphere. However, some physical concerns on symmetry still need to be 
addressed. Normally, we require the directions in one octant form a ‘triangle-shaped’ 
ordering as shown in Figure 2-8 in Chapter 2. And all directions in the other seven 
octants are decided by symmetry. The ‘triangle-shaped’ distribution is required to keep 
the property of ‘rotation invariance’. For example, in the level-symmetric quadrature, 
number of directions per level increases by one from one level to the next. And the 
choice of the polar axis (x, y, or z) does not affect the distribution of the directions 

X
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Z2Z3

Z4

Z5
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because the directions are perfectly symmetrical. In the Legendre-Chebyshev quadrature, 
we cannot keep this ‘perfect symmetry’ because its priority is to conserve higher 
moments over rotation invariance. However, we can still keep some ‘slightly disturbed 
symmetry’ of rotation invariance by employing the same ‘triangle-shaped’ direction 
ordering.  

The procedure to build a Legendre-Chebyshev S10 quadrature in the first octant can 
be explained as follows: We choose the five positive roots of P10(x) as the level positions. 
There is only one direction on the top level. And its position on the circle is decided by 
the positive root of T2(x). On the second level, the two positive roots of T4(x) become the 
quadrature node positions. The third level node positions are chosen by the three roots of 
T6(x), and so on. On the bottom level, five directions are to be defined, which are the 
positive roots of T10(x).  These five level nodes form a triangle-shaped distribution in the 
first octant. The final layout of the nodes has a quite similar look as the level symmetry 
quadrature of S10. Figure 2-10A shows the difference of direction distribution between 
the level-symmetric and Legendre-Chebyshev quadrature with an order of 10. 

Newton’s Method to Find Pn(x) Roots 

In the Legendre-Chebyshev quadrature, the roots of Legendre and Chebyshev 
polynomials are essential to locate the positions of the quadrature nodes. Chebyshev roots 
are easy to find since they are uniformly distributed on the unit circle as shown in Figure 
B-1.  
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For a Legendre polynomial f(x)=PN(x), we apply a variant of Newton’s method to find all 
the positive zeros {xi} in an increasing order as follows.   

Step 1: Set initial guess xg=0 for the first (smallest) positive root x1. 

Step 2: For i=1, 2, … , N, repeat step 3-5, where N, an even integer, is the polynomial 
rank.  

Step 3: Use Newton’s method to find root xi. 

Step 4: Set 
)(

)()(
ixx

xfxf
−

= . 

Step 5: Set initial guess xg= xi for next root xi+1. 

Step 6: Stop 

In Step 3 of the above algorithm, the polynomial f(x) and its derivative can be defined as 
follows. 
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Then we can apply the following iterative formulation of Newton’s method to find root xi 
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In Eq. B-14, )(xPN and )(' xPN can be estimated by the recurrence relations of Legendre 
polynomial defined in Eqs. B-15 and B-16. 

0)()()12()()1( 11 =++−+ −+ xnPxxPnxPn nnn                                                          (B-15) 

)()1()()1()()()()1( 11
'2 xPnxxPnxnPxnxPxPx nnnnn +− +−+=+−=−                       (B-16) 

So far we have set up the layout of the directions on the unit sphere by finding roots of 
Pn(x) and Tn(x). We will further discuss the node weights in the next section.  

Positivity of Weights 

Another physical concern is the positivity of the node weights. Level-symmetric 
quadrature is limited to the order of 20, because negative weights occur beyond order 20. 
In the Legendre-Chebyshev quadrature, the weight for node i is calculated by the product 
of polar weight (level weight) and azimuthal weight.  

TPi www ⋅=                                                                                                             (B-17) 

Both the polar weight wp and azimuthal weight wT  are calculated by Eq. B-4 with 
Legendre and Chebyshev polynomials, respectively. First we evaluate the terms in Eq. B-
4 for azimuthal weights by applying some Chebyshev polynomial properties. 
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We can substitute Eqs. B-18 and B-19 into Eq. B-4. 
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So the Chebyshev nodes are equally weighted. In the TITAN code, we normalize the 
azimuthal weights on the same level to one. So we simply use normalized weights.  
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Where n is level number. Next we can evaluate the level weights by applying some 
properties of Legendre polynomial given in Eq. B-22. 
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By substituting Eq. B-22 into Eq. B-4, and applying the recurrence property of Eq. B-16, 
we can rewrite Eq. B-4 as follows. 
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Note in deriving Eq. B-23, we also apply 0)( =in xP . Since 10 << ix , wT defined by Eq. 
B-23 is positive definite. Therefore, unlike the level-symmetric quadrature, the Legendre-
Chebyshev quadrature weights are always positive. Furthermore, we can prove that the 
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In the Legendre-Chebyshev quadrature, we always choose n as an even integer. 
The roots and weights are symmetrical regarding to x=0. We can apply Eqs. B-17, B-21 
and B-24 to calculate the total weight for all directions in the first octant. 
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As the level-symmetric quadrature, all the directions in other octants are 
determined by applying symmetry to the ones in the first octant. We can conclude that the 
sum of the Legendre-Chebyshev quadrature weights in one octant is equal to one as in the 
level-symmetric quadrature. 
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Conclusions  

We have proved two very desirable properties of the Legendre-Chebyshev 
quadrature for transport calculations. First, it can conserve integration up to 2N-1 order. 
Second, the weights are always positive for any order of the quadrature. However, we do 
lose some symmetry of rotation invariance. On the other hand, the level symmetry 
quadrature keeps the perfect symmetry of rotation invariance at the cost of only Nth order 
accuracy and an order limitation of 20. These two quadrature types reflect the trade-off 
while pursuing mathematical accuracy and physical symmetry.  

In the TITAN code, a quadrature set can be further biased by physical concerns. 
We can apply the ordinate splitting technique (Chapter 2) on some directions with more 
‘physical importance’. We also developed the fictitious quadrature technique (Chapter 5), 
which is designed for calculating the angular fluxes in the directions with more ‘physical 
interests’. 
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