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VERSION 9.4X.5 RELEASE NOTES, LEGAL NOTICE, & LICENSING 
AGREEMENT 

 
This version of PENTRAN includes many improvements to the original code architecture, 
and culminates thirteen years of code development, testing, and evaluation since the first 
version was introduced in 1996.  The PENTRAN code runs in ANSI FORTRAN-90, and there 
are no patches or code settings to be made; the same source code compiles and runs on any 
parallel machine, and has been tested on IBM, SUN, and CRAY/SGI parallel computers, and 
numerous “Beowulf”-class PC-Clusters.  Parallel operation of PENTRAN on PC-clusters under 
the Linux Operating System have been extremely successful using the Portland Group, 
ABSOFT, Intel, and VAST-Linux FORTRAN compilers with any Message Passing Interface 
(MPI) library set, including either LAM/MPI, Open MPI , or MPICH.  In addition, the 
PENTRAN code system has undergone significant testing; the latest applications include a 
dry storage fuel shipping container and a series of analytical “TIEL” benchmarks.  
  
LEGAL NOTICE:  PENTRAN is limited-licensed by HSW Technologies LLC (HSWT), found 
on the web at http://www.hswtech.com.  Any use, application, or reference to any portion of 
the PENTRAN code system, this User's Guide, magnetic media, or any other materials of any 
kind linked to HSWT constitutes a full, implicit release of the code author(s) and collective 
research underwriters/sponsors from all liability.  IN NO EVENT SHALL HSWT BE LIABLE 
FOR ANY INDIRECT, INCIDENTAL, PUNITIVE, SPECIAL OR CONSEQUENTIAL 
DAMAGES, OR DAMAGES FOR LOSS OF PROFITS, REVENUE, OR USE INCURRED BY 
THE USER OR ANY THIRD PARTY, WHETHER IN AN ACTION IN CONTRACT, OR TORT, 
OR OTHERWISE EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.  HSWT 'S 
LIABILITY FOR DAMAGES ARISING OUT OF OR IN CONNECTION WITH THIS 
SOFTWARE SHALL BE ZERO DOLLARS. THE PROVISIONS OF THIS AGREEMENT 
ALLOCATE THE RISKS BETWEEN HSWT AND THE USER.  HSWT 'S PRICING REFLECTS 
THIS ALLOCATION OF RISK AND BUT FOR THIS ALLOCATION AND LIMITATION OF 
LIABILITY, COMPANY WOULD NOT HAVE RELEASED THIS AGREEMENT.   
 
LIMITATIONS on DISTRIBUTION and USE:  Any user of the PENTRAN code, User's 
Guide, magnetic, optical, or electronically transmitted media, or any other materials linked 
to the PENTRAN development implicitly agrees that the materials are not releaseable to 
other parties/individuals in accordance with a limited license agreement.  Furthermore, all 
persons with access to PENTRAN or related materials implicitly agree not to reverse 
engineer or reconstitute source code from software media.  Violators of this limited license 
agreement are subject to civil and criminal sanctions, and may be prosecuted to include 
damages and legal expenses awarded in accordance to the Confidentiality Laws of the State 
of Florida, or as determined by applicable state laws governing intellectual property. Other 
state and federal laws of the USA may apply.  The user agrees to take all reasonable steps to 
ensure that Confidential Information is not disclosed or improperly distributed by its 
employees, representatives or agents in violation of the terms of this Agreement.   
 



LICENSING: Parties interested in obtaining further information on PENTRAN should 
contact Dr Glenn Sjoden (glenn@hswtech.com) or Dr Ali Haghighat (ali@hswtech.com) at HSW 
Technologies, LLC, http://www.hswtech.com, telephone: (352) 871-1099.  No-cost licenses 
are granted to universities through an agreement with RSICC at Oak Ridge National 
Laboratory, provided assurances for export control are properly completed by individual 
users as required under applicable US laws and codes; in all cases, no warranties are 
expressed or implied. 
 
About the Cover:  A visualization of a virtual array of processors with decomposition of the 
transport equation used in PENTRAN in the angular, energy, and spatial (x y z Cartesian) 
domains; a pulsed neutron assembly; a 3-D model of the Boiling Water Reactor rendered 
using PENMSHXP, and a fuel pin depicting the “net current” vector displaying the net 
radiation flow in each fine mesh, and a whole core PWR reactor with 289 sub-assemblies 
modeled in PENTRAN.
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FOREWORD 

The overall vision of solving very large 3-D radiation transport problems better and faster 
than ever before was the fundamental reason for the development of the PENTRAN code.  
The idea of the need for such a code came originally from Ali Haghighat, who suggested the 
distributed parallel Sn code development idea as a PhD dissertation project for Glenn 
Sjoden.  Working together from 1995-1996, Glenn and Ali initally developed the first version 
of PENTRAN on the IBM-SP2 supercomputer using a “new” parallel standard, MPI.  Compaq 
Digital Visual FORTRAN and its predecessor releases provided superb programming and de-
bugging vehicles for code development with strict enforcement of ANSI-FORTRAN. Since 
then, it has been continuously and extensively improved, and has been successfully used on 
numerous parallel machines.  Continuing development and application of PENTRAN is 
leading to new research, providing great insight in discrete ordinates transport theory and 
parallel processing, although there always remains more to learn.  This User’s Guide is 
intended to describe the features, input parameters, and general operating characteristics of 
PENTRAN.  Undoubtedly, additions and amendments will be made to this document, as the 
code is under continuous development and testing. 
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1. TECHNICAL OVERVIEW 

The PENTRAN (Parallel Environment Neutral-particle TRANsport) code was initially 
developed with the following research goals and code development objectives in mind: 

RESEARCH GOALS  

(1) To demonstrate the parallel scalability of a 3-D transport code designed from scratch for 
scalable parallel implementation with full variable decomposition on distributed memory 
and computing architectures,  (2) To implement and test parallel algorithm phase space 
decomposition strategies based on problem physics and load balancing/parallel efficiency 
issues,  (3)  To provide for and investigate the benefits of adaptive discrete ordinates spatial 
differencing schemes as they relate to problem physics, decomposition, and load balancing,  
(4)  To test the benefits of differencing and acceleration methods in conjunction with items 
(2) and (3) above, and (5) to provide higher order strategies for variable mesh coupling for 
increased accuracy and scalability in large transport problems. 
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SPECIFIC OBJECTIVES USED FOR CODE DEVELOPMENT  

The code should iteratively solve 3-D Cartesian, multigroup problems with anisotropic 
scattering via P L Legendre moments, with level symmetric SN angular quadratures.  Industry 
standard FIDO input with vacuum and specular reflective boundaries should be allowed for.  
Sources should be definable as volumetric or plane surface incident fluxes, which may vary 
with space, angle, and energy.  Further, a parallel memory structure should be used, where 
memory intensive arrays should be defined for local (as opposed to global) maximum 
dimensions to reduce storage extent and overhead.  In addition, the code should permit 
varying mesh cells with a coarse grid topology.  Also, the code should employ coarse mesh 
rebalance acceleration, as a minimum.  Various differencing schemes should be readily 
selectable (e.g. linear diamond, directional theta-weighted, etc) via adaptive algorithm logic, 
and based on problem physics; “smart” ordering of scattering sweeps, such as Alternating 
Direction Sweeps, or ADS (Haghighat, 1992), and other tools, many readily extracted from 
the literature, should be implemented where practical, again according to problem physics.  
The code should be written in ANSI FORTRAN, and parallelized for message passing using 
the standardized MPI Message-Passing Interface library for portability to most any 
distributed memory parallel machine architecture (Gropp, et al, 1994). 
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CODE DEVELOPMENT STATUS  

Coding of PENTRAN began in June 1995.  It is now at the point of being fully mature.  In 
addition, code refinement and development continues today.  A fully parallel 3-D, two-grid 
(using “medium” and “fine” mesh transport grids) version of the code is in place in ANSI 
FORTRAN-90 and is currently ~40,000  lines.   

Scalable parallel process testing with complete angular, energy, and spatial domain 
decomposition, block adaptive (discontinuous) meshing, first order Taylor Projection Mesh 
Coupling, fully definable sources, vacuum and reflective boundary conditions, multigroup, 
arbitrary order anisotropic scattering, multigrid coarse mesh zoned rebalancing, and 
selectable differencing for both forward and adjoint transport, with self-tuning memory has 
been exercised over and over on numerous problems.  Test problems have demonstrated 
exact agreement (within the convergence criteria) with TWOTRAN-II, THREEDANT, 
DORT, and TORT production codes for all fixed source problems tested.   

In addition, the code has been experimentally benchmarked in 3-D using models of the 
Venus-3 Reactor owned by SCK in Belgium and extensively tested (with excellent results) 
using the Kobayashi 3-D benchmark problems.   Criticality eigenvalue problem results 
compared between TWOTRAN-II and PENTRAN also yielded excellent agreement, as did 
recent tests directly compared to  MCNP  computation in a variety of applications, including 
the 2-D MOX Benchmark.  Most recently, PENTRAN was applied to Ganapol’s “TIEL” quasi-
analytic benchmark suite; results were excellent, and the code demonstrated very consistent 
numerics at high quadraures and PL orders. 

PENTRAN has been applied to all aspects of transport theory research.  PENTRAN is 
available for no-cost use at universities that meet certain acceptance criteria under a limited 
license agreement.  A minimum requirement includes the need for an 8-processor Linux 
based cluster or larger parallel computing platform.  Commercial licenses are available, and 
discount programs are available for transport theory related research contracts awarded at 
the University of Florida. 

Current University partners include: 

 The Ohio State University, Nuclear Engineering Program 

 The University of Florida , Department of Nuclear and Radiological Engineering  

 The University of Florida , Florida Institute of Nuclear Detection and Security 
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UNIQUE PENTRAN CODE FEATURES 

ANSI Code, Parallel I/O.  The PENTRAN code has been designed from scratch in ANSI 
FORTRAN and adapted to ANSI FORTRAN-90 (to take advantage of dynamic array 
allocation) to be parallelized on a distributed memory, multiple instruction, multiple data 
(MIMD) machine architecture using the standard Message Passing Interface (MPI) message 
passing language.  Any distributed memory MIMD parallel system running FORTRAN with 
MPI could be used to execute PENTRAN without modification.  All Input/Output (I/O) is 
performed by each processor in parallel (as required) to the fullest extent possible.  This 
includes input processing, initializations, and file output.  Output files are written only for 
the local energy groups and spatial cells processed on a given processor (with local angles 
written in the case of angular fluxes), in accordance with local memory partitioning of the 
problem to n processors.   

Parallel Memory.  Parallel memory utilization was a paramount design goal.  All 
dimensions for memory intensive arrays (e.g. angular fluxes) are partitioned locally.  That 
is, these arrays only need be as large as required for the largest locally stored spatial grid, 
number of local energy groups, and local angular sweep octants based on the problem being 
solved.  Tuning of memory parameters also occurs automatically in a two-level memory 
model to minimize memory useage.  This design is possible due to the independent memory 
of each processor on a distributed memory MIMD machine; in theory, if the problem 
becomes larger, one simply can add more processes (with further decomposition) to obtain a 
solution.    

Space, Angle, & Energy Decomposition.  Full phase space decomposition is available 
(space, angle, and energy), with fully automatic scaling of the problem to n processes (based 
on a user specified decomposition weighting vector).  Also, a specific number of processes can 
be locked for each decomposition variable if desired; or, decomposition scaling in any one 
variable can be blocked (restricted to one processor).  The automatic scaler/mapper will 
attempt to best adapt decomposition to the user's weighting vector and the number of 
processes assigned at execution.  Following decomposition, PENTRAN includes automatic 
load balancing and red-black options to maximize efficiency.  To assist the user, PENTRAN 
can be tasked to automatically set F90 memory parameters to optimal settings. 

Communicators.  To further maximize parallel execution efficiency, communication 
among processors is, where practical, carried out only between processors specifically 
involved in a given task,  e.g. for those processors all computing transport sweeps through 
particular coarse cells in the same energy group in a multigroup transport problem.  This is 
accomplished by MPI process “communicators” constructed during problem initialization to 
exchange data between specific groups of processors.  The number of communicators 
constructed is minimized to the number uniquely required to reduce network buffering 
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overhead.  The communicator structure is fully automatic and completely transparent to the 
user. 

Adaptive Differencing strategy. Different differencing schemes can be assigned to 
different coarse meshes; therefore, differencing can be adaptive based on each coarse mesh.  
Linear Diamond Differencing without fixup (DD) and with set-to-zero fixup (DZ), 
Directional Theta-Weighted (DTW), Eponential-Directional Iterative (EDI), and 
Exponential Directional Weighted (EDW) differencing schemes are independently 
selectable for each coarse mesh.  The DD and EDW schemes are included only for test 
purposes and not intended for routine use (it is strongly recommended that DD not be used 
since it is without fixup).  An adaptive (DZ,DTW,EDI) scheme to automatically shift DZ to 
DTW (in the event a DZ negative flux fixup is detected), and shift from DTW to EDI (if a 
DTW angular flux weight factor that is too high is encountered) is built in (default) and 
user-adjustable.  Performance metrics are available for each differencing scheme, enabling 
the user to assess differencing performance in each coarse mesh for either the medium 
and/or fine mesh grids. 

Coarse, Medium, Fine Grids, and TPMC.  Variable 3-D meshing (along each of x, y, and z) 
is available between different coarse meshes, with “medium” and “fine” multigrid meshing 
within each coarse cell.  (Coarse cells are set to contain heterogeneous zones, where 
differencing is performed on medium and fine grids within each coarse mesh cell; this is 
often referred to as “Block AMR”, or “Block Adaptive Mesh Refinement”). As a consequence 
of variable 3-D meshing, Different spatial aspect ratios may be used along any set of axes  in 
3-D (e.g. “boxoids” or “voxels”) within each coarse mesh, and mesh grid distances need not 
be the same along adjoining surface boundaries between different coarse mesh cells.  Mesh 
interpolations for angular fluxes between adjacent coarse cell surfaces (where coarse mesh 
cells are not necessarily on the same processor) are accomplished using Taylor Projection 
Mesh Coupling (TPMC).  This is performed in all transport sweeps to increase accuracy and 
minimize the information loss when moderate and dense mesh grids are interfaced on a 
common boundary between two adjacent coarse cells.  Note that particle conservation is 
strictly applied in this process.  A simplified multigrid method that can provide speedup and 
conserves memory uses a single set of arrays for (local) angular fluxes on both the medium 
and fine mesh grids.  The medium grid angular fluxes are relaxed to convergence using a 
tolerance less than that for the fine grid, whereupon they are projected onto the fine grid 
(overwriting the last medium grid values) using a new Taylor Projection Mesh Coupling 
(TPMC) scheme.  The preconditioned fine grid values are then iterated to final convergence.  
This is a “simplified” multigrid method, since no residual corrections are projected with 
cycling between the medium and fine grids.  Transport solution projections are only 
performed from medium to fine grids, and accelerate the solution by preconditioning the 
fine grid in a nested iteration.  Varying speedups are possible with this simplified multigrid 
scheme, depending on the problem, with the advantage of conserving memory by not 
storing the medium grid explicitly. 
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Rebalance & ADS.  Standard coarse mesh rebalancing (CMR), implemented with 
restrictions and damping as Partial Current Rebalancing (PCR), and/or system rebalancing 
(SR) is available for acceleration, and can be used simultaneously with multigrid.  There is 
no restriction on the differencing scheme that can be used with either CMR (PCR) or 
multigrid.  Each processor independently performs rebalance using a direct solution 
(Cholesky factorization in the case of CMR (PCR)) over a zoned subset of coarse meshes 
(selected by the user) to obtain group rebalancing factors following transport sweeps.  
Further, rebalancing factors are used to scale only the scalar flux rather than the angular 
flux, as this prevents the need for message passing to complete additional angular 
quadratures prior to the next source iteration (if angular decomposition is invoked).  
Angular sweeps are ordered/decomposed in a sequence for Alternating Direction Sweeping 
(ADS).  This can drastically increase convergence in some problems when used with 
rebalance (Haghighat, 1992).  A new preconditioned Simplified Sn scheme is under 
development, and is supported in part by this version. 

Flux Moment Preconditioning.  PENTRAN now incorporates options that allows the user 
to precondition the 0th and 1st flux moments in the initial SN source iteration sweep using an 
effective initial guess to the polar angle flux moments to provide acceleration to the SN 
source iteration.  The REPRO tool preconditions the problem flux moments using the 
previous transport run result, and therefore helps to accelerate the solution (Plower, 2007). 
This stemmed from an initial effort by Longoni, Haghighat, and Sjoden to implement the 
Simplified Sn Equations (SSN) to serve as a low order synthetic acceleration scheme to 
accelerate the standard discrete ordinates source iteration, which suffers from a spectral 
radius close to one (slow convergence) with significant scattering in the problem.  Due to 
numerical stability issues, a coupled residual iterative algorithm for an intrinsic SSN-SN 
acceleration was found to be impractical.  An alternative approach using the fully converged 
SSN flux moment solution as an independent flux preconditioner (rendered via a parallel 
code developed by Longoni and Haghighat called PENSSN) for the SN transport source 
iteration sweep can result in significant overall acceleration (on the order of 300% for 
SSN+SN compared to SN alone) for criticality eigenvalue problems (Longoni, 2004).       

Subdomains.  The spatial coarse mesh structure in PENTRAN fundamentally defines 
rebalance subdomains, parallel spatial decomposition subdomains, and adaptive Sn 
differencing subdomains.  Although spatial decomposition is not required, more than a 
single coarse mesh must be defined to permit spatial decomposition on more than a single 
processor.  Since a processor synchronization is performed following completion of a coarse 
mesh, a sufficient number of fine meshes should be contained within each coarse mesh to 
maintain computational load granularity and rebalance integrity.  One restriction is that 
there be an equal number of defined coarse cells, energy groups, and directions partitioned 
to each processor; this is needed for parallel synchronization to prevent “deadlocks.”  
PENTRAN performs this automatically to the extent permissible, again based on the 
decomposition weight vector (decmpv) specified by the user. 
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Fixed Sources.  Fixed sources can be defined as volumetric or as planar boundary fluxes; 
sources can have completely arbitrary spatial, angular, and/or energy distributions.  Spatial 
and angular source distributions can be defined independently by energy group.  Group 
dependent source scale factors can be specified.  Criticality eigenvalue solutions are also 
implemented and have been benchmarked using test problems.  Criticality problems and 
problems that include upscatter can not be used with the group window option or the 
restart option; these features are currently reserved for downscatter-only fixed source 
problems.  

Quadratures and Legendre Scattering Expansion.  Full support for level-symmetric 
angular quadratures through S20, and arbitrary SN order (to the limit of memory allocation) 
for Pn-Tn angular quadratures fully conserving even and odd moment conditions.  Also, 
Legendre scattering order (PN) is now completely arbitrary (to the limit of memory 
allocation).  In addition, PENTRAN now supports the ability to implement user biased 
angular quadrature sets (over-riding built in quadratures if the file “quadset.pen” containing 
the user defined quadratures is placed in the local problem execution directory). 

FIDO & Execution.  Industry standard, free field format “FIDO” input is used, with 
standardized order for cross sections.  All cross sections are assumed to be blended and 
assembled outside of PENTRAN.  Provisions are made for row, column, binary, and ORNL-
GIP-binary formats, with and without Legendre coefficients multiplied in advance.  Wall-
clock time, maximum iterations, and convergence tolerance are all independent means of 
execution control, particularly useful for batch data processing. 

PENDATA.  A data management utility, PENDATA, seamlessly gathers data automatically 
following a parallel PENTRAN run, and provides several options for the user in stripping 
results from parallel output files, including data extractions from binary file storage.  This is 
an essential utility for a code with parallel I/O. 

PENMSH-XP Mesh or Results Generation.  Planar images (z-levels) or 3-D TECPLOT 
renderings are available using the PENMSH-XP utility.  This utility generates a 3-D Cartesian 
mesh and can be used to automatically generate a PENTRAN input deck.  Graphical 
schematics of 3-D problem geometry are automatically generated for use in the TECPLOTTM 
plotting/graphics package.  2-D slices are also rendered by PENMSH-XP as .png images; note 
the 3-D rendering of images (and flux results) requires minimal  effort in TECPLOT. Use of 
PENMSH-XP reduces problem input preparation to a trivial process, even for large, intricate 
geometries 

Platform Independent Code. The code is written in ANSI FORTRAN-90; it has been 
implemented on a single-processor Pentium-PC, an IBM RISC-6000 Workstation, SUN 
Workstation, and in parallel on the IBM Scalable PowerParallel System-2 (IBM-SP2) and SGI 
Origin-2000 supercomputers, and on a variety of Linux based PC Clusters, and most recently 
on an Apple G5 cluster.  Benchmark testing has demonstrated that PENTRAN is greater than 
97% parallelizeable, resulting in excellent parallel speedups.  Actual performance depends 
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on the problem being solved, differencing and acceleration methods used, problem load 
balancing, red-black coloring, and applied decomposition strategy.  Also, due to the 
inherent scalable parallel memory structure used, increasingly large 3-D problems that could 
not be solved on single processor platforms and/or within a reasonable time period can be 
solved in parallel using PENTRAN by adding processors.
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2. THEORY AND APPLICATION 

MULTIPROCESSING TERMINOLOGY 

Parallel Processing.  The idea of multiprocessing and the evolution of parallel computing 
began in the late 1950s and continues today.  Due to the ten-fold increase in computational 
performance during each five year period since then, multiprocessing has made great 
progress.  The reasons for attempting to solve any numerically intensive problem with 
multiprocessing are simple: to reduce execution time, obtain higher accuracy, and/or solve 
problems that are larger than can be solved using a traditional, single processor von 
Neumann architecture (Freeman and Phillips, 1992).  It is useful to define some common 
parallel processing terms; they are only briefly mentioned here and will appear throughout 
this manual.  

Machine Classes.  There are four classes of machines, as introduced by Flynn (1972): 

SISD  - Single Instruction/Single Data Stream (traditional von Neumann machine) 
SIMD  - Single Instruction/Multiple Data Stream (lock-step arrays, vector machines) 
MISD  - Multiple Instruction/Single Data Stream (all tasks contribute to one data set)  
MIMD - Multiple Instruction/Multiple Data Stream (multiple independent tasking) 
  
Shared and Distributed Memory.  Shared memory MIMD systems are constructed so that 
each processor has global memory access and are typically limited to tens of processors due 
to the large number of physical connections to the memory map.  Distributed memory 
MIMD parallel computers maintain completely independent memories, where processors 
exchange information by message passing over a high speed network; each processor 
independently executes code and can perform independent input/output (I/O) if allowed for 
in the parallel algorithm.  Distributed memory processors, viewed as “nodes,” are typically 
connected together using a variety of topologies, and can range in number into the 
thousands. 

Speedup and Efficiency.  Parallel performance models are necessary for analyzing and 
quantifying parallel speedup and efficiency.  Parallel speedup (SP) measures the overall 
reduction in computing time to solve a problem.  It is defined as the wall-clock time on a 
serial (single) processor divided by the wall-clock time on P  processors: 

(2.1)      PSP TTS /=  

Parallel efficiency (EP) measures the economic advantage of the parallelization by comparing 
the speedup factor to the allocated number of processors (Freeman and Phillips, 1992): 

(2.2)      PSE PP /=  
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It is assumed here that the parallel algorithm overhead, the extra executable code and 
storage required to expedite parallel execution, is negligible during single processor 
execution.  This is a typical convention often adopted in measuring parallel speedup 
(Werner, 1981).   

Amdahl’s Law.  Also, an upper bound on anticipated parallel speedup can be determined by 
applying the Amdahl’s Law, which states that given the fraction of a code that is 
parallelizeable:  0<fP<1, the maximum observed speedup for P processors with parallel 
communication time (TC ) is equal to: 

(2.3)    
SCPP

P TTPff
S

//)1(
1

++−
=  

where in the limit of an infinite number of processes (assuming zero communication time): 

(2.4)      
)1(

1 lim
P

Pp f
S

−
→

∞→
    

Therefore, from equation (2.4), if the parallelizeable portion of a code is fP = 0.80, the 
maximum theoretically observed speedup is 5.0 regardless of the number of additional 
processors added to the problem.  In reality, due to increasing parallel instruction and 
communication overhead with the addition of more and more processors, there will be a 
point (depending on fP , system architecture, and problem size) where adding more 
processors leads to extremely low efficiencies.  This may be irrelevant if the code is scalable 
in memory (as in the case of PENTRAN), where, regardless of speed, the problem requires 
some number of processors to be solved at all.  A plot of Amdahl’s law (assuming Tc=0) 
depicting maximum theoretical speedup based on parallel fraction and associated efficiency 
as a function of processors is provided for illustration below. 

 

 

 

 

 

 

 

Fig. 2.1.  Amdahl’s Law, yielding maximum theoretical speedup (Left) and parallel efficiency 
(Right), depicted for various parallel code fractions (f) and number of processors (P) (Sjoden, 
1997). 
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Load Balancing and Granularity.  Other important terms include load balancing and 
granularity.  Load balancing involves distributing work to processors evenly to maximize 
parallel efficiency.  Algorithm granularity is a qualitative term that refers to the number of 
process operations that can be executed by each processor before a synchronization (or 
communication) of the processors must be implemented.  These synchronizations can be 
viewed as serial barriers that limit parallel performance.  Conventional definitions of grain 
size are: 

 fine grain       - unit numbers of operations before synchronization 

 medium grain  - tens of operations before synchronization 

 coarse grain     - hundreds (or more) of operations before synchronization 

Computation/Commnication Ratio.  The computation/communication ratio varies from 
machine to machine; this is the ratio of the CPU  instruction speed in flops (floating point 
operations per second speed, often stated in Mflops, or millions of flops) attainable on the 
system to the relative speed of data transfer between processors.  The speed of data transfer 
is related to communication latency, or the time required to send a zero byte-length 
message, and the communication bandwidth, in megabytes per second.  The 
computation/communication ratio is often more of an issue on distributed memory, 
message passing machines, as network communication data rates are typically orders of 
magnitude slower than typical Mflop rates (Gropp, et al, 1994).    

Dedicated vs. Non-dedicated.  Parallel machine availability is a practical performance 
issue.  If processors are available to users in a dedicated mode, then during parallel 
execution, a single user has complete control of the processors, and parallel performance can 
be accurately determined.  Alternatively, in a non-dedicated (interactive) mode, processors 
are simultaneously available to many users; absolute parallel performance may be difficult to 
verify in this case. 

Parallel Scalability.  With regard to a working definition of parallel scalability, scalable 
algorithms maximize computation to communication ratio, minimize serial operations, 
maximize algorithm and data parallelism, and maximize efficiency for the architecture 
(shared versus distributed memory) (Gerner, 1995).  While there is a great deal more that 
can be mentioned about multiprocessing fundamentals and terminology, more complete 
discussions can be found elsewhere (see Freeman and Phillips, 1992, and Gropp, et al, 1994, 
and Chandy and Misra, 1988).  
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DETERMINISTIC TRANSPORT METHODS 

Multigroup Transport Equation.  Deterministic discrete ordinates approximations of the 
transport equation invoke a discretization of the energy, angle, and space variables.  
Discretization of energy is accomplished by spectrally averaging over energy groups (g=1,G), 
from high to low energies, resulting in the multigroup transport formulation.  In steady 
state, the multigroup transport equation is (Lewis and Miller, 1993); the left side includes 
loss by leakage and collision, and scatter, fission, and independent sources are on the right: 
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Angular Variable.  Note that the angular variable is normalized on the unit sphere in the 
above formulation, so that integration over Ω  is expressed in terms of the polar angle 
cosine μ  and azimuthal angle ϕ  as:  
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Hereafter, this is implicitly assumed. The scattering term is then expanded using a truncated 
set of spherical (surface) harmonics, with 
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The Legendre polynomial )( olP μ , using the Legendre Addition Theorem, is: 
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Legendre polynomials and an exponential term: 
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Using equations (2.10), (2.11), and (2.12), )( olP μ  can be written:  
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By trigonometric identity: 
  

(2.14)                      )'sin()sin()'cos()cos())'(cos( ϕϕϕϕϕϕ kkkkk +=−  

The vectors >→<Ω ϕθ ,ˆ  on the unit sphere can be expressed as a set of direction cosines 
projected parallel to the x, y, and z axes, respectively, as >< ξημ ,,  Note that η  and ξ  can 
be expressed in terms of polar angle cosine μ  and the azimuthal angle ϕ : 

(2.15)                                                )cos(1 2 ϕμη −=  

(2.16)                                               )sin(1 2 ϕμξ −=  

 
A 3-D Cartesian geometry (using a right handed coordinate system) is shown in Figure 
below. 

 
 
 
If the streaming operator ∇⋅Ω̂ in equation (2.5) is expanded in 3-D Cartesian coordinates, it 
becomes: 
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   Fig 2.2:  3-D Cartesian Geometry 
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3-D Cartesian Boltzmann Transport Equation.  Substituting equations (2.7), (2.13), (2.14), 
and (2.17) into equation (2.5), we obtain the Legendre expanded multigroup form of the 
transport equation in 3-D Cartesian geometry (Lewis and Miller, 1993, and Bell and 
Glasstone, 1985) considering only fission sources: 
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 where μ = x direction cosine for angular ordinate  
         η = y direction cosine for angular ordinate 
         ξ = z direction cosine for angular ordinate 
       gψ = group g angular particle flux (for groups g=1,G) 
         ϕ = azimuthal angle constructed from )/arctan( ηξ , with proper phase shift 
  gσ = total group macroscopic cross section 
         l = Legendre expansion index ( Ll ,0= ), L=0 or odd truncation 
  lgsg ,'→σ =  thl Legendre moment of the macroscopic differential scattering  
                 cross section from group gg →'  (Equation (2.7)) 
    )(μlP =  thl Legendre polynomial 
      lg ,'φ =  thl Legendre scalar flux moment for group g 

    )(μk
lP =  thl ,  thk  Associated Legendre polynomial 

  k
lgC ,' φ =  thl ,  thk Cosine Associated Legendre scalar flux moment for group g 

  k
lgS ,' φ =  thl ,  thk Sine Associated Legendre scalar flux moment for group g 

        gχ = group fission distribution constant (neutrons) 
  ok = criticality eigenvalue (neutrons) 
    g fνσ = group fission production (neutrons) 
   
The flux moments, lg ,'φ , k

lgC ,' φ and  k
lgS ,' φ  are defined in terms of 'μ  and 'ϕ  as: 
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ADJOINT TRANSPORT 

 
The adjoint transport operator +H can be derived using the adjoint identity for real valued 
functions and the forward multi-group transport operator, where  represents integration 
over all independent variables: 
 
(2.22)   +++ = gggg HH ψψψψ       
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The angular adjoint (importance) function is 
+
gψ , and H  is the forward transport operator.  

Applying the adjoint boundary condition that particles leaving a bounded system have an 
importance of zero in all groups (converse of the vacuum boundary condition in a forward 
calculation) with the above equations, and requiring a continuous importance function 
mathematically leads to the multi-group adjoint transport operator:  
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This operator is not Hermitian, and has units of inverse length.  Also, the minus sign on the 
streaming term is an indicator that adjoint particles travel along a reversed direction, where 
scattering progresses from group g back to other groups g’ (those groups formerly 
contributing to group g in the forward transport operator).   
 
Note that the adjoint transport operator, as in Equation (2.24), can also be derived directly 
from physical principles based on the conservation of neutron importance.  This type of 
derivation does not require a strict mathematical application of vector identities and a zero 
importance condition for particles leaving the system, yet this approach does result in the 
same operator as given in Equation (2.24).  No matter how it is derived, the adjoint function 
is associated with the importance of neutral particles with respect to some objective (Bell 
and Glasstone, 1985).  For example, the particles can be neutrons and the objective could be 
is an absorption in He-3 to yield an (n,p) reaction.     
 
To solve for the adjoint function, a forward transport solver can be directly used if angular, 
cross section, and energy group indices are properly treated.  That is, a forward transport 
algorithm can be used to solve an adjoint transport problem if the group cross sections and 
sources are transposed, including the cross section scattering matrix, re-ordered to 
commence from group G to 1.  In this case, all angles are considered to be defined implicitly 
in opposite (negative) directions, with group G adjoint sources input and reported into the 
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forward code as group 1, and group G-1 adjoint sources input and reported as group 2, etc.  
This is precisely how the adjoint is solved for using the PENTRAN system, although the 
transpose of the forward cross sections is performed internally by the code.  Once solved for, 
the dimensionless adjoint function provides the neutron or photon importance throughout 
the problem phase space relative to a particular response, defined by the adjoint source.  
The adjoint can then be used in several ways. 
 
Ultimately, we wish to predict the overall response R of a detector in counts per second 
using the adjoint function.  For problems of this type, the count rate R is based on the 
number of absorption reactions per unit time in the He-3 gas (leading to an (n,p) reaction) 
caused by neutrons.  If such a fixed neutron source/detector problem is proposed, the 
neutron flux must satisfy the transport equation: 

(2.25)           gg qH =ψ  

and the inhomogeneous adjoint equation should be satisfied with an adjoint source aliased 
to the group detector response cross section g dσ , according to: 
 
(2.26)         g dgH σψ =++  
 
Applying Equations (2.22). (2.25), and (2.26), and integrating over all variables results in a 
very useful expression for detector response R: 
 
(2.27)        ggdg qR +== ψσψ g  

 
This indicates that the detector response can be obtained by complete integration of the 
source distribution with the adjoint function obtained using Equation (2.27)—for any 
arbitrary source distribution.  Therefore, note that R can be computed directly from the 
results of either of (i) several forward transport computations for each neutron source, or (ii) 
a single adjoint transport computation.  For a more detailed discussion of the adjoint, we 
refer to several available references (Lewis and Miller, 1993; Bell and Glasstone, 1985). 
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FORWARD TRANSPORT RESPONSE 

 
 In reference to a He-3 detector, in the traditional forward case, the standard Boltzmann 
transport equation must be solved to yield a scalar flux for a specific neutron source q placed 
inside the Sample Chamber.  For a number of different types of sources, separate 
computations must be performed for each source.  Once the neutron flux is determined for 
each scenario, the detector response in the He-3 could be numerically computed in the 
conventional manner using group cell fluxes and detector cross sections, as given in 
Equation (2.28).   
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ADJOINT TRANSPORT RESPONSE 

 
 In the adjoint case, the adjoint transport equation must be solved using an adjoint source 
that is equal in magnitude to the detector response cross section placed in each location, for 
this discussion, occupied by He-3 tubes.  This yields the adjoint function throughout the 
problem phase space, and represents the importance of neutrons in each spatial location 
and energy group relative to a response in the  
collective of He-3 tubes.  Then, the He-3 tube count rate R due to any neutron source q 
placed in a specified location is computed as given in Equation (2.29). 
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Therefore, the appropriate adjoint source (used for this problem) is a unit source weighted 
by the group absorption cross sections for He-3, placed in each He-3 location. The phase 
space integral of any arbitrary cell source distribution weighted by the computed adjoint 
function yields the total detector response R.  Hence, a single adjoint calculation may be 
used to predict R from any conceivable source distribution.  One should make note of the 
duality of the response R predicted by theory in Equation (2.27) and stated in Equations 
(2.28) and (2.29).  However, responses computed using forward and adjoint solutions can 
only be directly comparable if the numerical truncation error from either computation is 
negligible.  In general, responses are typically comparable within some prescribed margin of 
error as a result of numerical effects.   
 
Numerical Issues.  To solve for the adjoint function using the adjoint transport equation, 
the forward transport equation (2.18) can be used if all angles Ω̂  are taken to be Ω− ˆ , with 
angular and energy group indexes transposed (since the transport operator is not self 
adjoint).  Any forward transport algorithm can be used to solve adjoint transport problems if 
the cross sections and sources are transposed and group re-ordered from group G to 1, with 
angles implicitly defined in opposite directions (Bell and Glasstone, 1985).   
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Adjoint and the Importance Function.  Therefore, once solved for, the adjoint function 
provides the neutron or photon importance throughout the problem phase space relative to 
a particular response, defined by the adjoint source.  The adjoint function can then be used 
in several ways.  One use of the adjoint function is to determine the regions/energies that 
most affect the response to help determine limiting mesh intervals in the geometry.  
Further, a deterministic adjoint solution may be used to assign importances for variance 
reduction in non-analog Monte-Carlo applications, which can add extreme efficiency to such 
calculations (Wagner and Haghighat, 1996).  PENTRAN can be used to solve for the adjoint 
function; transposition of all cross sections, etc is performed internally by the code, and the 
user is reponsible only for properly defining the transposed adjoint source, and noting that 
groups and directions are reported implicitly reversed.  
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DISCRETE ORDINATES AND QUADRATURE 

Angular Quadrature.  In the discrete ordinates approximation, it is assumed that the 
transport equation only holds for a set of M distinct angular directions  >→<Ω ξημ ,,ˆ  on 
the unit sphere.  In standard SN calculations, a numerical quadrature is used to integrate the 
discrete ordinate angular fluxes to obtain flux moments.  In practice, quadrature sets must 
have the following properties: 
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Because net current Jnet in an isotropic flux is zero, this requires that equations (2.30) and 
(2.31) hold true.  Equations (2.31) are known as the odd moment conditions, and because they 
must be satisfied, the quadrature set must be symmetric on the unit sphere for each set of 
directions, invariant with respect to 90-degree axis rotations.  Equations (2.32) are known as 
the even moment conditions, required to insure proper integration of the Legendre 
functions.  The Legendre polynomials must be represented due to the expansion in the 
scattering term, so that: 
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For example, from the first even moment condition, with n=2, the quadrature set should 
satisfy equations (2.33) and (2.34) for the P1 (first order only) Legendre Polynomials.  Since, 
for any unit angular direction vector Ω̂ , the ordinate must lie on the unit sphere: 
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Level Symmetric Quadrature.  Due to a required rotational symmetry in three 
dimensions, the following recursion relationship must hold for level symmetic quadrature in 
any given octant: 
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The N in any 3-D SN quadrature corresponds to the number of levels from each direction 
cosine on the unit sphere, and there are M=N(N+2) ordinates on the unit sphere, with 
Moct=N(N+2)/8 in each octant, with N/2 distinct direction cosine values (Stamm’ler and 
Abbate, 1983).  To derive an S6 level symmetric quadrature set as an example, using the first 
octant, six equations with six unknowns must be solved for to provide unique, symmetric 
direction cosines and corresponding level weights. The following equations must be solved 
simultaneously using equations (2.30), (2.32), and (2.36) (equations (2.31) are then satisfied 
implicitly): 
 

Symmetry conditions: 
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  Even Moment Conditions: 
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Level Symmetric Point Weights.  Since the weights wi in 
equations (2.37) and (2.38) are level weights (note there are 6/2=3 
levels in an octant for S6), another set of equations is required to 
obtain point weights wm i ;  these can be derived from the ordinate 
pattern in the first octant (see the Figure at right depicting the point 
weight pattern within an octant): 
 

(2.39)    1212 www mm =+ ; 222 wwm = ;  311 wwm =    

 
Using Equations (2.37) to (2.39), the quadrature set for S6 can be solved for.  Note that from 
the even moment conditions in equation (2.38), this S6 quadrature set will properly 
integrate Legendre moments through P3 .  All level symmetric quadratures from S2 through 
S20 were derived for use in PENTRAN using equations (2.30), (2.32), and (2.34), along with 
equations similar to (2.31).  No level symmetric quadratures satisfying Equations (2.33) and 
(2.34) are available beyond S20 due to the appearance of unphysical negative weights.  
Therefore, some other angular quadrature set must be used to satisfy the moment 
conditions beyond S20 (in PENTRAN, this need is met with the use of the Pn-Tn 

Fig 2.3: Point Weight  
Pattern for S6 
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Quadratures). To provide for the possibility of increased quadrature order while properly 
representing the integration of spherical harmonics represented in the scattering source, a 
provision for arbitrary order Legendre-Chebychev (Pn-Tn) quadrature sets are available in 
PENTRAN. 
 
Legendre-Chebyshev (Pn-Tn) Quadratures. In the Pn-Tn methodology, we set the ξ  levels 
on the z-axis equal to the roots of Legendre polynomials, but for the azimuthal angles on 
each level we use the roots of the Chebyshev TN polynomials of first kind (Longoni and 
Haghighat, 2001) . The Chebyshev polynomials of first kind have the following formulation: 
 

(2.40)   ( )[ ] ( )ωω lTl coscos ≡  
 
The Chebyshev polynomials are orthogonal and satisfy the following condition: 
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 Again, using the ordering of the level symmetric quadrature set, we set the azimuthal angles 
on each level using the following formulation (Carlson and Lathrop, 1964): 
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In Eq. (2.42), “l” is the level number. Unlike the level symmetric quadratures, the (Pn-Tn) sets 
do not present negative weights for SN orders higher than 20.  
 
Demonstration of Even Moment Condition Preservation.  Again, the main advantage of 
the level symmetric sets is that they preserve the even and odd moments of the direction 
cosines, preserving orthogonality and leading to an accurate solution. In this section, we 
compare the new (Pn-Tn) quadrature sets based on the magnitude of the even moments of 
the direction cosines.  
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.4 Discrete directions selected on one octant with S30 Pn-Tn quadrature set 
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      Table 2.1  Even-Moments for Pn-Tn S30 set 
Moment 
Order (n even) ∑

=

M

i

n
iiw

1
μ

 
∑

=

M

i

n
iiw

1
η ∑

=

M

i

n
iiw

1
ξ

n+1
1

 
2 0.333333333 0.333333333 0.333333333 0.333333333 
4 0.199999962 0.199999962 0.2 0.2 
6 0.142857143 0.142857143 0.142857143 0.142857143 
8 0.111111111 0.111111111 0.111111111 0.111111111 
10 0.090909091 0.090909091 0.090909091 0.090909091 
12 0.076923077 0.076923077 0.076923077 0.076923077 
14 0.066666667 0.066666667 0.066666667 0.066666667 
16 0.058823529 0.058823529 0.058823529 0.058823529 
18 0.052631579 0.052631579 0.052631579 0.052631579 
20 0.047619048 0.047619048 0.047619048 0.047619048 
22 0.043478261 0.043478261 0.043478261 0.043478261 
24 0.043478261 0.043478261 0.043478261 0.043478261 
26 0.037037037 0.037037037 0.037037037 0.037037037 
28 0.034482759 0.034482759 0.034482759 0.034482759 
30 0.032258065 0.032258065 0.032258065 0.032258065 

 
 
 
Ordinate Splitting Method.  The Ordinate Splitting (OS) Technique is developed for 
solving problems with highly peaked angular flux and/or source. The idea is to introduce 
more directions at local regions; for this purpose we split a direction into a number of 
directions with equal weights. These directions are positioned symmetrically around the 
direction of interest and their weights are calculated by equally dividing the original weight 
among the new split directions and the direction of interest, as depicted in Fig. 2.5a. This 
technique because of its local refinement can be considered as a biasing approach.  In 
PENTRAN, the solid angle associated with a specific ordinate is sub-divided into equal size 
sectors. The added directions are placed on the corners and flanking the original direction is 
at the center as shown in Fig. 2.5b. A proper selection of the sector surrounding the original 
direction is performed to avoid overlapping with other directions. The number of additional 
directions is chosen with a parameter called segmentation, where  #directions=(2*nseg -1)2

  
 
Fig. 2.5b shows a S16 Pn-Tn quadrature set with three split angles; for this case we have set 
nseg = 2 (Longoni and Haghight, 2001). 
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Fig. 2.5a    Ordinate Splitting Technique 

 
Fig. 2.5b   S16 Pn-Tn quadrature set modified 
with the Ordinate Splitting Technique 
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DIFFERENCING SCHEMES 

At this point, a spatial approximation to equation (2.18) is 
required.  As mentioned earlier, several approaches can be 
made to formulate a discrete ordinates spatial differencing 
scheme.  Zeroth spatial Legendre Functions are: 
 

(2.43)  1)(0 =xP           1)(0 =yP          1)(0 =zP  

 
To derive the zeroth spatial moment balance equation, 
equation (2.18), multiplied by equations (2.43), is integrated 
over a local cell volume and divided by the integral of the 
product of equations (2.43), also integrated over the cell volume. 
For our purposes, a cell volume has parallelepiped dimensions ( x, y, z). Assuming that 
particles are traveling in a positive direction, edge and center flux integrals are represented 
by integral averages.  If we consider that directions traveled could be negative, then 
considering ξημ ,, for a positive sense in the equations, which always occurs if the 
equations are derived in the direction of particle motion.  The zeroth spatial moment balance 
equation (omitting the group g subscript for brevity) is: 
  

(2.44)        

For a positive angular vector, where 0),,( >ξημ  with the entering and exiting surface 
averaged angular fluxes normal to the x-axis are given by: 

(2.45)      

       
Surface terms normal to the y- and z- dimensions are defined in a similar manner.  The cell 
volume-averaged angular flux is given by:    

(2.46)     
           

Fig 2.6  Cell Volume Element
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The volume-averaged source term Aq  is defined in a similar manner.   Note that we refer to 
the surface averaged terms that enter and leave the cell as the “in” and “out” subscripts, 
respectively, while the “A” subscripts denote cell average quantities.   
 
Seven Unknowns.  Equation (2.44) is exact, but contains seven unknowns.  We can 
consider the three entrant values (“in”) are known from boundary values, and that the 
collective cell averaged volumetric source Aq  is assumed to be known from a previous 
source iteration (in the standard SN source iteration scheme).  Therefore, only the cell 
average angular flux  Aψ  and the exiting (“out”) surface values are unknowns, where these 
latter values are obtained using a set of auxiliary equations.  Auxiliary equations amount to 
“fitting functions” that resemble the behavior of the angular flux across the spatial cell, and 
they establish the accuracy of the differencing method (Lewis and Miller, 1993). 
 
Weighted Schemes.  For weighted spatial differencing schemes, the following auxiliary 
equations are assumed to hold between cell average and boundary angular fluxes: 

(2.47)    
      
DD and TW Schemes.  Note that the standard Diamond Differencing (DD) scheme results 
when a=½, b=½, and c=½ in equations (2.47);  the DD scheme is second order accurate, but 
may lead to negative solutions. (Lewis and Miller, 1993).  In such situations, a “negative flux 
set to zero fixup” of the Diamond scheme is commonly used.  In this paper, we denote the 
Diamond scheme with the zero fixup as Diamond-Zero (DZ).  Furthermore, it is worth 
noting that the negative flux fixup has also demonstrated to be the source of load imbalance 
in parallel processing solutions (Haghighat, Hunter, and Mattis, 1995).  To overcome the 
inherent difficulties of the Diamond scheme, Rhoades and Engle (1977) developed the Theta-
Weighted (TW) scheme that is always positive. 
 
Oscillatory Behavior.  Recently, Petrovic and Haghighat (1996)  have shown that in 
multidimensional geometries, non-physical oscillations occur because of the "mismatch" 
between the direction of particles (along a characteristic) and the spatial axis where the 
differencing is carried out, even with very high mesh refinement.  The oscillations are 
attributed to a “forced” relationship of the average angular flux to the boundary fluxes 
(depending on the auxiliary equation), where no directionally dependent boundary 
contribution relative to each axis is taken into account (Petrovic and Haghighat, 1996).  The 
non-physical oscillations inherent in solutions rendered by the Diamond scheme only add to 
the previously mentioned difficulties with positivity, and can be quite detrimental to 
convergence, especially in parallel execution.  
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DTW Scheme.  To remedy this, Petrovic and Haghighat developed the Directional Theta-
Weighted scheme (Petrovic and Haghighat, 1996) that is an extension of TW.  To derive a 
Cartesian form of the TW scheme for weight factor a (for xout ψ ), equations (2.47) are placed 
into equation (2.44).  Solving for  A , and again using equations (2.47), an expression for  

xout ψ is obtained.  The Diamond relations are then assumed to hold for the y- and z- 
directions (with b=½ and c=½).   
 
To force positivity, arbitrary fixed theta-weighting parameters  are introduced into 
the formulation;   is dropped from the denominator, and a is assimilated into the 
parameters.  Assuming the lower bound of  xout ψ is strictly zero, we obtain an equation for 
the “a” weight:  
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Using a similar procedure along the y- and z-axes to yield weights for “b” and “c,” 
respectively: 
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(2.50)                           
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Petrovic and Haghighat specified that for maximum smoothing in directions perpendicular 
to respective characteristics (to minimize oscillations), the fixed theta parameters in the TW 
scheme could be modified to allow variable theta parameters that are dependent on the 
characteristic of the incident radiation.  As a result, the Directional Theta Weighted (DTW) 
scheme employs the 3-D theta parameters given in equation (2.43) substituted for each θ  
parameter in equations (2.48), (2.49), and (2.50). 
 

(2.51)                  
 
where ξημ ,,  are the direction cosines along the x-, y-, and z- axes, respectively.  
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The angular flux weighting factors are subsequently used to obtain the DTW average cell 
angular flux, given by: 
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(2.52)    

Therefore, using equations (2.51) in equations (2.48), (2.49), and (2.50), respectively, the 
DTW scheme uses direction-based parameters to obtain angular flux weighting factors, from 
which average and inherently positive exiting angular fluxes are derived using equation 
(2.47).  The DTW scheme is clearly non-linear in the way the angular flux weights (a,b,c) are 
derived from directionally dependent parameters, incident fluxes, and volumetric sources.  
To be consistent, these weights are restricted to the range between ½ and 1, with accuracy 
approaching second order truncation when all weights are ½ (equivalent to the Diamond 
scheme).  This truncation error is evident if equations (2.47) are substituted into (2.44).  If 
that result is subtracted from equation (2.44), and Taylor’s series expansions are applied 
about Aψ ,  the trucation error of the DTW formulation is: 
 

(2.53)  
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  where  
u = u

m    for  u c {x, y, z} and m c { m , m , m }    
  
A positive truncation error DTW  indicates that DTW will underestimate the solution, while a 
negative truncation error indicates DTW will overestimate the solution.  When DTW 
weights are all ½, the truncation error is identical to that of the Diamond scheme, 
influenced only by second partial derivatives.  Note that when DTW weights are greater 
than ½, the truncation error is influenced by both first and second partial derivatives of the 
angular flux (Sjoden, 1997).  Because of the directional weighting of DTW, a set of angular 
fluxes along different paths will contain both over- and underestimated angular fluxes.  In 
addition to being positive and free of oscillations from the directional weighting, the DTW 
scheme can be significantly more accurate than the Diamond scheme, mainly because we 
typically are interested only in the scalar flux (integrated over all directions).  The combined 
effects of over- and underestimates of the angular flux among different directions with DTW 
often cancel during integration (quadrature), resulting in more accurate scalar fluxes.  In the 
special case where the flux is relatively flat (such as in the middle of a reactor core), DTW 
weights will be near unity, and the truncation error will be very small due to small flux 
gradients. 



 

                                                         38                              Theory and Application 

EDW Scheme.  While DTW may not be a highly accurate scheme in all situations, it 
behaves reliably in general situations (positivity, stability, with derivatives having proper 
signs, etc).  Therefore, a predictor- corrector exponential scheme that uses DTW to predict a 
solution that is then corrected by an exponential fit should be stable and more accurate than 
DTW alone.  Using this approach, the following inherently positive (provided the coefficient 
a0  is positive) exponential auxiliary equation is proposed: 
 
(2.54)   m(x, y, z) = ao exp( i P1(x)/ m ) exp( j P1(y)/ m ) exp( k P1(z)/ m )      

 
First order spatial Legendre functions, orthogonal to equations (2.35) over the widths of a 
single cell, are:  
 

(2.55)    12)(1 −
Δ

=
u
uuP  where  0[u[ u and   uc {x,y,z}      

 
The exponential coefficients (λ ) define the overall profile of equation (2.54); these 
coefficients are normally obtained by root solving 1st moment transcendental conservation 
equations (Mathews, Sjoden, and Minor, 1994), (Walters, Wareing, and D. Marr, 1995), and 
(Wareing and Alcouffe, 1995).  To avoid the computational overhead of explicitly conserving 
the 1st moment balance equations, Sjoden and Haghighat proposed using a DTW solution to 
provide good estimates of these coefficients in a predictor step in the following manner.  
Consider a single cell of dimensions ( x, y, z).  By taking first partial derivatives of equation 
(2.54) with respect to x-, y-, and z- axes, and assuming that in the limit as cell dimensions 
approach zero, (x,y, z) d A, then kji λλλ  and , , can be separated as follows: 
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Then, the first partial derivatives in equation (2.56) can be approximated, again using “out” 
and “in” cell surface references, using a standard finite difference formulation, where 

},,{ zyxu ∈ : 

(2.57)    
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Then, using the predicted angular fluxes initially calculated using DTW (where DTW 
predicted angular fluxes are denoted by ψ~ )  we can obtain explicit estimates (after algebraic 
simplification) for kji λλλ  and , , .  For the x-, y-, and z- dimensions, respectively: 

(2.58)   
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Note that use of equation (2.57) inherently assumes that the average of the first partial 
derivative of the angular flux is assumed to be at the cell center.  However, note further that 
this equation only needs to estimate the derivative of the angular flux as opposed to the 
angular flux itself.   Furthermore, the formulations cast in equation (2.58) demonstrate that 

kji λλλ  and , ,  are based on a dimensionless ratio of the DTW predicted angular fluxes, thus 
reducing the sensitivity of computing a precise derivative.  Since the DTW scheme provides 
estimates for the exponential constants, we must solve for the coefficient  ao  in equation 
(2.54) using the zeroth moment balance defined in equation (2.44).  To do this, we first 
perform the integrations for the outbound surface and cell volume angular fluxes as in 
equations (2.45) and (2.46) defined using the exponential auxiliary equation (2.54).  (Note 
that inbound surface averaged fluxes and the cell volumetric source terms are assumed to be 
known).  Placing the resulting formulations into the balance equation (2.44), we can obtain 
a solution (albeit rather cumbersome) for ao; substituting the resulting expression for ao 
back into the formulations for the outbound surface and volume averaged angular fluxes, we 
can obtain A  (after more algebraic simplification): 
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where β  in equation (2.59) is defined by: 
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The outbound cell fluxes can be defined in terms of the cell average angular flux: 
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Equations (2.58) through (2.61) therefore provide a correction to the initial DTW predicted 
angular fluxes using exponential functions based on the auxiliary equation (2.54).  This 
methodology allows the exponential coefficients (λ ) to be predicted at very low cost using 
the DTW scheme (Sjoden and Haghighat, 1997).  This is the Exponential Directional 
Weighted (EDW) method; it is absolutely positive, stable, directionally weighted, and is 
significantly more accurate than the DTW scheme in streaming problems with relaxed cell 
intervals.  Demonstrations as to the effectiveness of EDW in streaming problems can be 
found in the literature.  
 
To obtain an expression for truncation error of the EDW scheme, we again make the 
assumption that in the limit of small cells, the DTW and EDW solutions are identical.  
Expanding the exponential arguments using a Taylor’s Series truncated to third order, 
substituting into equation (2.44), and then subtracting that result from equation (2.44) 
yields an expression for the truncation error of the EDW scheme (again after additional 
algebraic simplification): 

(2.62)   
EDW = x

2 x

Ø
Øx |A + x2

8 x

Ø2

Øx2 |A +
 

A
x
⎛
⎝
⎜1 − A

A + (− x /2 ) Ø /Øx | A + ( x 2 /(6 A )) (Ø /Øx | A ) 2
⎞
⎠
⎟ +

y
2 y

Ø
Øy |A +

y 2

8 y

Ø 2

Øy 2 | A +

 
A
y
⎛
⎝
⎜ 1 − A

A + (− y /2 ) Ø /Øy |A + ( y 2 /(6 A )) (Ø /Øy |A ) 2
⎞
⎠
⎟ + z

2 z

Ø
Ø z | A + z 2

8 z

Ø 2

Ø z 2 |A +

 
A
z
⎛
⎝
⎜ 1 − A

A + (− z /2 ) Ø /Ø z | A + ( z 2 /(6 A ) ) (Ø /Ø z | A ) 2
⎞
⎠
⎟ + O ( 3 )

       
 
From equation (2.62), note that the truncation error (and therefore the accuracy) of the 
EDW scheme is dependent on both the slope and concavity (for each partial derivative) of 
the angular flux, with a strong influence from first partial derivatives.  Therefore, the EDW 
equations result in a correction to the DTW predicted angular fluxes using exponential 
functions based on the auxiliary Equation (2.54).  In this way, the exponential constants are 
predicted at low cost using the DTW scheme relative to first moment methods [Sjoden and 
Haghighat, 1997]. 
 
 
EDI Scheme.  The EDI scheme is also a predictor-corrector scheme with the exponential 
basis used in EDW, however, EDI includes iterative refinement of the exponential constants 
(that are held fixed in EDW) to yield increased accuracy.  EDI is derived via a method 
analogous to the EDW scheme up to Equation (2.56).  Then, recognizing that Equation 
(2.56) is an exact expression, we integrate both sides over the cell volume, avoiding the 
application of any limiting assumptions (as in Equation (2.57)), where both sides of 
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Equations (2.56) are integrated over the cell dimensions ),,( zyx ΔΔΔ  divided by cross 
sectional area:   
 
(2.62a) 
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Therefore, preserving surface and cell averaged variables (as in Equation (2.45)) yields a 
formulation for each exponential constant that is albeit identical to that presented in 
Equations (2.58).  This establishes that Equations (2.58) indeed hold for each exponential 
constant, but are derived as exact analytic expressions without a priori assumptions 
regarding the location of the average angular flux over the cell or truncation error, etc.  Most 
importantly, this directly  establishes that a fixed point iteration can be performed to refine 
each exponential constant kji λλλ ,,  by successive iteration (I-1, I, I+1…) of Equations (2.63) 
given here: 
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For any unique fixed point iteration, and especially so in multivariate implementations in a 
general algorithm, it can be shown that the fixed point iteration will remain convergent on a 
finite, nonzero interval [p,q] by adhering to the first derivative criterion in Equations (2.63) 
[Sjoden, 2007]:  
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In summary, an approximate Sn solution is assumed along each direction, m, within a 3-D 
rectangular cell, of the form of Equation (2.54), where the coefficient and exponential 
constants are to be determined by both boundary conditions and the requirement of particle 
conservation over the cell.  As a result, note that there are four degrees of freedom, requiring 
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four equations.  Three equations are obtained directly from boundary conditions. 
Specifically, there are three inflow cell faces, and the average flux on each such face is 
defined by boundary conditions.  Thus, because the EDI scheme is continuous rather than 
discontinuous, the approximate solution must satisfy the correct average flux value on each 
incoming face, so that the fourth equation relates to particle conservation.  Specifically, if we 
substitute the approximate solution into the transport equation and integrate over the cell, 
the resulting balance equation must be satisfied by the solution. We also note that the EDI 
and EDW schemes are similar in their basis; they differ in that the EDW scheme uses the 
values from Equations (2.58) as one-time values, whereas the EDI scheme uses them as 
starting values to begin a fixed point iteration of the exponential constants for continued 
iteration to convergence, as given in Equations (2.63).  Tests for divergence are performed, 
and if any fixed point iteration should violate Equations (2.64), iterations cease with a 
default to EDW values.  Therefore, the EDI scheme is engaged initially using Equations 
(2.58) to yield an initial starting guess (from DTW), with successive applications of 
Equations (2.63) applied in accordance with Equations (2.64) to yield a stable fixed-point 

iteration to solve for more accurate values of each exponential constant kji λλλ ,, , yielding 
accurate constants.  An additional improvement recently discussed involves an Aitken 
extrapolation of the third and subsequent iteraties of the exponential constants, which 
improves convergence and accuracy (Yi and Sjoden, 2008). 
 
Overall, the EDI scheme is implemented in a method nearly identical to that of EDW, using 
the same equations as the EDW scheme, save for the fixed point iterations on the 
exponential constants.  To summarize this, cell sources and cell incident fluxes are assumed 
to be known.  The DTW scheme is used to provide the starting value for the exponential 

constants kji λλλ ,, ; note that if the incident fluxes are zero, as at a vacuum boundary, no 
further action is taken beyond the DTW step.  For the vacuum boundary cell case, the 
solution is based only on the DTW scheme, since the continuous exponential EDI scheme is 
not applicable in that situation.  Note the EDW and EDI formulations are strictly positive, 
and that some exponential arguments can be re-used among formulations to minimize 

floating point operations.  Exponential constants kji λλλ ,,  are then recomputed and 
evaluated for stability according to Equations (2.63) and (2.64), with a use of EDW for 
unstable cases.  If stable, Equations (2.59) to (2.61) are re-applied, etc, and if average angular 
fluxes are converged, it is assumed the EDI iteration is complete.  The exact performance 
and efficiency relative to EDI converegnce is quite problem dependent, although there are 
numerical checks for numerical consistency in the scheme.  If the upper limit of iterations 
per ordinate in EDI is achieved, application of the EDW scheme prevents oscillation in the 
solution and prevents instability, although this can restrict the numerical accuracy benefit 
derived from the iterative refinement of the exponential constants.  As a practical issue, the 
average number of fixed point iterations over all sweeps and iterations is reported as a 
performance metric among each coarse mesh zone for the EDI scheme in PENTRAN. 
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METRICS AND ADAPTIVE DIFFERENCING 

Schemes in PENTRAN.  The DD, DZ, DTW, EDI, EDW, and EDH differencing schemes are 
fully implemented into PENTRAN.  These schemes are selected for each coarse mesh, and 
can be controlled by the code in an automated “Adpative Differencing Strategy.”  Metrics 
reported for each coarse mesh and scheme are noted (/sweep = “per angular flux sweep”): 
 
  Table 2.2   Differencing scheme Options with Adaptive Strategy and Upgrade Criteria 
Diff Method Avg Metric Upgrade Method 

No Acronym-Description Description Criteria Lock-in 

0 DD  = Linear Diamond/No Fixup Not Used None 0 
1 DZ  = Linear Diamond/Zero Fixup Fixups/Sweep Fixup -1 
2 DTW = Directional Theta Weighted* MaxWgt/Sweep W=0.9500 -2 

3 EDI = Exponential-Directional Iterative Iterations/Sweep maxhΔσ =0.02 -3 
4 EDW = Expon-Direct Weighted DTWuse/Sweep None -4 
5 EDH = Exp-Direct. Omega Hybrid DTWuse/Sweep None -5 

   *Upgrade possible when Source density/Collision density default ratio qfratio < 1.00 
 
Adaptive Differencing Strategy.  The adaptive differencing strategy (the mechanics of 
which are described in detail below) enables the code to automatically select the best 
possible scheme for the energy group being solved, and the “upgrade criteria” to determine 
which scheme is selected, has been refined over recent years to yield optimum solution 
accuracy.  The differencing metrics provide the user with useful information about the 
relative accuracy of the differencing in fine meshes contained by each coarse mesh.  
PENTRAN allows for the user to take advantage of an adaptive differencing capability where 
the code selects from among the DZ, DTW, or EDI schemes to remove most of the difficulty 
in determining the appropriate scheme used on fine meshes within a particular coarse mesh 
and energy group.  At the start of each new in-group sweep, PENTRAN resets the scheme 
used for every fine mesh in each coarse mesh to the originally prescribed scheme, and the 
schemes adapt to the most appropriate scheme, on a coarse mesh basis.   
 
Standard Adaptive Differencing Strategy Mechanics.   The adaptive differencing strategy 
in PENTRAN works in the following manner: assume (for illustration) that the DZ scheme is 
initially assigned (but not locked by using a ‘-1’) in each coarse mesh. An automatic 
differencing scheme transfer from DZ to DTW takes place if a negative flux fixup is 
encountered anywhere in a coarse mesh.  This is followed later by another transfer from 
DTW to EDI if any maximum linear weight factor (as given in Eqs (2.48), (2.49), or (2.50)) 
beyond a user specified maximum weight factor (recommended as a default of 0.95, but user 
adjustable in the first entry of the “dtwmxw” vector parameter) is detected for DTW within a 
coarse mesh.  This is performed since a high weight factor indicates DTW is being pressed to 
maintain positivity in a severe streaming environment, so that the shift to EDI enables an 
exponential treartment for cells that are optically thick, since these scenarios are best 
handled using the exponential basis of the EDI scheme.   
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Automatic Exceptions to the Standard Adaptive Strategy.   The following are exceptions 
to the standard adaptive strategy just presented: 

 maxhΔσ .   
 Considering that  maxhΔ =max ),,( zyx ΔΔΔ , this value is computed to evaluate the 

optical cell thickness, if maxhΔσ  is less than a user specified value (0.02 is the 
default),  then for these vanishingly thin cells, the DTW scheme is not upgraded 
to the EDI scheme, since a very small optical thickness is such that DTW is 
perfectly adequate to resolve the angular flux accurately.  This value is set in the 
second entry of the “dtwmxw” vector parameter in the input deck. 

 qfratio.   
 Since the logic to upgrade a differencing scheme from DTW to EDI is based on 

any DTW weight factor exceeding a value near unity (recommended default of 
0.95, based on significant testing), where as mentioned, in a streaming situation 
with no or low-level sources, this is required to maintain positivity at the expense 
of accuracy.  However, using this metric to determine the scheme upgrade 
criteria, a shift from the DTW to EDI schemes also occurs in any mesh cell that 
contains a strong source simply because the angular flux in these situations is 
often relatively flat (resulting in a low angular flux gradient).  Therefore, with a 
strong source present, this leads to DTW weight factors close to unity, and causes 
a conflict with the upgrade criteria just presented, which is undesirable, since the 
DTW scheme performs very well in regions where there is a strong source—DTW 
weight factors are close to unity because the flux is inherently flat.   

 Therefore, note that if the angular flux is inherently flat due to the presence of a 
strong source, a step scheme would be very effective—the “step” scheme results 
algebraically if the weights are set to unity along each direction for DTW.  This 
scenario has been mitigated in PENTRAN through the use of the qfratio.   

 Considering the group dependent transport equation divided through by the 
collision density term, with group scatter, fission, and independent sources: 
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Where a qfratio  > 1.00 indicates a “source dominated” cell, and a ratio < 1.00 
indicates a  “streaming dominated” cell, where “source” includes the combined 
scatter, fission, and independent angular source terms.  Note this simple 
relationship is readily available when solving for angular fluxes within each cell.   

 The qfratio is the computed ratio of the cell angular source density to the cell 
angular collision density; if this ratio is greater than a user prescribed value (based 
on testing, the default for qfratio = 1.00), then the DTW scheme is automatically 
selected without attention to the DTW weight factors, since in a source 
dominated cell, the DTW scheme performs optimally.  Therefore, with the qfratio 
parameter, upgrades will only occur when the fine mesh cell is one that is 
“streaming dominated” away from source regions.  The qfratio value is set in the 
third entry of the “dtwmxw” vector parameter (see the description in Block IV 
input).   The recommended default value of qfratio is 1.00.         
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Differencing Scheme Lock Feature.  PENTRAN also allows the user to restrict (“lock-in”) 
any differencing scheme in a particular coarse mesh (by setting the differencing scheme 
number in that respective coarse mesh to a negative number, as noted in Table 2.2, far 
right).  For vanishingly thin cells, experience has shown that the user may wish to “lock” the 
DTW scheme in those cells. If the use of a specific algorithm is not a strict requirement, 
adaptive differencingis recommended.  
 
Parallel Differencing Issues.  If parallel decomposition is used with adaptive differencing, 
a synchronization is made among the processors working on a particular coarse mesh to 
upgrade to the same adaptive differencing scheme, even if an upgrade is not required by all 
processors.  This lends the adaptive procedure to a degree of numerical consistency, so that 
the user is certain of the differencing algorithm rendering a solution in a particular coarse 
mesh.  Note that in the case of a fuel pin bundle immersed in water, flux gradients could be 
steep, and the EDI method may end up being selected, since it has demonstrated flexibility 
and accuracy in handling source region attenuation problems.  Clearly, zones containing 
strong sources may not likely require many (if any) DZ fixups, although this depends on the 
cross sections, mesh size, and parallel decomposition strategy used; Hunter, et al 
demonstrated that when DZ is used, parallel decomposition can directly increase the 
number of fixups applied.  
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ANGULAR FLUX MOMENTS AND BOUNDARY CONDITIONS 

3-D Flux Moments.  Regardless of the differencing method used, following an update of the 
group source and angular flux transport sweep through each cell, cell group scalar, cosine, 
and sine flux moments are updated using the latest cell average iterates.  Therefore, equations 
(2.65) are based on the cell averaged angular flux as presented in equation (2.46), and are 
updated using the following quadrature expressions (with an implicit group g subscript): 
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Note that these expressions include the 1/8 term from the criteria that quadrature weights 
were derived summing to one in each octant. Azimuthal angles are determined from: 
 

 (2.66)          m 0 = arctan ( m
m )  

 
where care must be taken to obtain the correct phase of the angle on the unit sphere.  If  

m < 0, m < 0, then  m = ( m0 − ) .  If  m > 0, m < 0, then  m = ( m0 + ),  otherwise, m = m0 . 
 
Boundary Conditions.  Standard boundary conditions include specular reflective, albedo, 
and vacuum (zero return current) boundaries.  For albedo boundaries, entering angular fluxes 
are reflected from surfaces with normal vectors parallel to the x axis, are, with  

m = m, m, m :  
 

(2.67)        xBdy( m) = xBdy( m
∏

) where   m $ i = − m
∏
$ i   and    m

∏
= − m , m , m  

 
Similar formulations hold for angular fluxes reflected from a surface normal to the y-axis with  

m
∏

= m , − m , m and normal to the z-axis with  m
∏

= m , m , − m .  In each case, the 
albedo factor a can be energy group dependent, and is equal to unity if the boundary is fully 
reflective, or equal to zero if the boundary is a vacuum.  PENTRAN allows for group 
dependent albedo boundaries on each surface. 
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  ACCELERATION SCHEMES: REBALANCING 

Rebalance Methods.  PENTRAN contains options for standard rebalance methods, as well as 
for a simplified multigrid acceleration scheme.  Each iterative acceleration schemes is 
compatible with any of the available differencing schemes with no special treatment, and they 
can be used simultaneously to accelerate the iteration process.  Coarse mesh rebalancing 
involves requiring the integral balance equation to hold for each energy group for each coarse 
mesh (Reed, 1971).  System rebalance is follows the same overall process and procedure  as 
coarse mesh rebalancing, although rebalance is only performed on each energy group over 
the entire problem.  Due to the parallel memory structure in PENTRAN, both of these 
methods require integration and message passing to complete the  rebalance.   
 
The integral balance equation for each group, after applying Gauss’ theorem to the streaming 
divergence, is 
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 where      J    = leakage current across surfaces A bounding volume V 

   − s  = within group removal cross section 

       o = scalar flux        

      QS (D,U)  = down- and up-scattering source 

   

Qfiss
ko  = volumetric fission source term 

     QExt  = volumetric external source term 

Introducing rebalance factors fijk  for each coarse mesh of volume Vijk  in an x-y-z gridspace 
for each energy group, and using partial currents normal to each respective surface, equation 
(2.69) is a general expression for rebalance for each coarse mesh; surfaces are labeled with 
respect to each local coarse mesh cell: 
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LU Factorization.  Simultaneous solution of the system of equations that result from 
Equation (2.62) for each coarse mesh in each energy group is required;  this is performed in 
PENTRAN using a direct Cholesky-LU factorization algorithm.   
 
Partial Current Rebalance.  All rebalance factors are damped using restrictions equivalent 
to Partial Current Rebalance (Rhoades, 1981).  Therefore, this means that maximum rebalance 
factors are set by the worst imbalance, with a damping factor applied in further rebalance 
operations to prevent divergence. To retain scalability and bound the memory required for 
this direct solution method, zoned rebalancing over subsets of coarse meshes is required if the 
number of coarse meshes exceeds the maximum rebalance matrix size, or if the user specifies a 
subset of contiguous zones over which to constrain particle balance following each source 
iteration.  If all of the coarse cells in a zone are not local to the processor, rebalance for that 
zone is by-passed.  This direct, zoned solution scheme for rebalance is necessary (as opposed 
to an iterative technique) to achieve adequate processor synchronization and minimize 
rebalance overhead. 
 
PENTRAN Rebalanceing Options.  A user can specify System Rebalance, Partial Current 
Coarse Mesh Rebalance, or an alternating combination (System-PCR) rebalance scheme.  The 
number of zones can be defined, with a maximum damping factor for PCR, and skip options 
(see the section on PENTRAN Input) 
 
Although it is rare, it should be noted that numerical instability, even with PCR damping, can 
occur with certain processor decomposition strategies (as noted by Reed for serial rebalance).  
To mitigate this, there are parallel synchronization options for each method (see the section 
on PENTRAN Input).  Forced synchronization can also be useful, since latency effects on 
some older parallel machines may require more parallel synchronization; this arises since 
rebalancing deals with select “planes” of processors, depending upon how the user has 
decomposed the problem.  The user should always default to a minimal synchronization 
rebalance option (unless there is a reason not to, such as a processor deadlock), because 
added processor synchronization adds to parallel overhead. 
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ACCELERATION SCHEMES: NESTED ITERATION “SLASH” MULTIGRID  

Multigrid Methods.  Multigrid spatial acceleration methods essentially use coarse grid 
iterates projected to correct fine grid iterates, and are best described by transforming the 
spatial domain into the frequency domain (with units of inverse length) using the Fourier 
transform.  High frequency errors present in successive fine grid iterates are readily reduced 
by each fine grid transport source iteration.  However, the low frequency persistent errors 
present in the fine grid iterates become increasingly difficult to reduce with mesh grid 
refinement.  In comparing a fine grid to a coarse grid formulation of a finite difference 
problem, the number of possible Fourier frequencies correspond to the number of equations 
in the linear system.  Since this depends on the stepsize used in the problem, a larger mesh 
step size will limit the number of possible Fourier modes (frequencies).  The highest 
frequency error components at a point on a coarse mesh will typically correspond to low or 
mid-range frequency error components for that same point on a fine mesh.  Therefore, if a 
value from one iteration on the coarse grid were projected to correct the fine grid solution, 
the correction should be greater (and most often is significantly greater) than a single fine 
grid iteration by itself.  This is because the low frequency errors in a fine grid problem are 
most effectively reduced by using a correction from a coarse grid solution.  Therefore, 
multigrid methods effectively increase the rate of convergence in the iterative scheme.  
Because the asymptotic rate of convergence is the negative logarithm of the spectral radius of 
the linear system, use of a multigrid procedure effectively reduces the spectral radius in 
comparison to the spectral radius of the single fine grid system.  This is the basis of the 
multigrid (also called multi-level) approach. 
 
Workload Issues.  For transport applications, Nowak, Larsen, and Martin (1987) 
demonstrated via Fourier analysis that if a mesh size is doubled (for computing on coarser 
mesh with a high scattering ratio), the number of iterations required to reduce the high 
frequency error by a factor of 10 is doubled (demonstrated using a weighted diamond 
scheme).  At the same time, in three dimensions, the number of cells is reduced by 1/8 (a 
factor of two along each axis).  Therefore, the overall work required on the coarser mesh 
is 25% of that on the fine mesh.  Nowak, et. al. also observed that if the scattering ratio is 
small, multigrid methods will not be as beneficial, since the transport operator effectively 
reduces the iterative error.  This is expected, since the spectral radius of the difference 
equation is directly proportional to the scattering ratio.   
 
From this, it is readily inferred that problems that are “less elliptic” (e.g. with lower scattering 
ratios) are dominated by errors that require a high frequency local iterative correction, and 
are therefore solved readily by the transport operator on the fine grid.  Alternatively, 
problems with high scattering ratios are elliptic in nature and are dominated by a global low 
frequency error;  these problems benefit the most from a low frequency iterative error 
correction provided by a multigrid solution. Overall, the key to obtaining accelerated 
convergence in a multigrid scheme is to use a powerful (yet computationally inexpensive) 
equation for a coarse grid iteration step.  Yet due to the immense memory requirements 
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demanded by multigroup parallel transport methods, there is a need to conserve the memory 
demanded per processor.   
 
Simplified “Slash(\)” Multigrid Scheme in PENTRAN.  To capture some of the beneficial 
acceleration effects of a multigrid scheme and still conserve memory, the PENTRAN code has 
both a medium and fine mesh grid structure contained inside each coarse mesh.  The 
medium grid can be automapped to set materials to the “nearest neighbor” fine mesh 
material, so one need only describe the fine mesh material distribution in the input.   
 
For a medium grid, PENTRAN iterates to a prescribed tolerance on the medium grid, and 
then overwrites medium grid angular flux values as they are projected onto the fine grid.  In 
this way, the same arrays are used to store both grids.  Recall that angular fluxes are 
partitioned in memory local to each processor in PENTRAN, so that only the portion of the 
phase space assigned to each processor is stored.  In spite of this, use of two transport grids 
would add to memory overhead, and increase the minimum processor pool required to solve 
a large problem.  Therefore, the medium grid angular fluxes are lost after they are converged 
to a suitable tolerance and then projected onto the fine grid using 3-D Taylor Projection Mesh 
Coupling, or TPMC  (presented in the next section).  Using this procedure, the low frequency 
error on the fine grid can be largely eliminated, causing the solution to be dramatically 
accelerated.  This scheme of projecting converged coarse grid values to the fine grid with 
TPMC is defined here as a “Simplified” Multigrid approach, and differs from more 
conventional multigrid methods (“V” cycle) that use residual error corrections between grids.  
Using this multigrid scheme in PENTRAN, test problems with high scattering ratios have 
demonstrated convergence with as much as an order of magnitude fewer iterations compared 
to the same problem solved using a single grid iteration sequence (Sjoden and Haghighat, 
1996).    
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ACCELERATION SCHEMES: PRECONDITIONING OPTIONS 

PENTRAN has a capability to use preconditioning to initialize zeroth and first Legendre based 
polar angle flux moments at the start of a transport computation.  Due to storage limitations, 
even with binary data format options, only zeroth and first Legendre polar angle moments are 
stored (supporting the first two moments in Equations 2.65a).  This means that higher 
moment terms (beyond 1st order) and associated Legendre moments (e.g. sine and cosine 
moments from the 3-D SN equations, etc, as in Equations (2.65b) and (2.65c)) are not 
preconditioned.  Because the dominant terms are the polar angle terms, preconditioning can 
provide speedups in the iterative solution, reducing the time and number of iterations by a 
factor of from two to five, depending on the problem, decomposition, iterative algorithm, etc.   
 
REPRO Tool for Preconditioning.  Often, one must rerun a transport problem in several 
parametric studies, such as in depletion and burnup, in which case it is useful to be able to 
take a previously completed PENTRAN transport solution and use it to precondition the flux 
moments so as to accelerate problem convergence.  The REPRO tool preconditions the 
problem flux moments using a previous transport run result, and therefore helps to accelerate 
the solution.  This  is an effective tool, since in spite of the fact that PENTRAN has a parallel 
memory structure, the REPRO tool has been implemented in a manner that is totally 
independent of the parallel processing execution/processor decomposition, leaving the user 
total flexibility in being able to precondition a problem with any previously converged run 
(for that same problem).  Typically, speedups range from a factor of two to five over a flat-
weighted starting flux.     
 
Use of REPRO is accomplished by first executing PENTRAN on a problem of interest.  Then, 
flux moments are extracted (as they normally are) from the binary (probname.f# files) files 
using PENDATA (with the user selecting the “REPRO” flux moment data format).  Then, 
REPRO is executed, and builds a set of preconditioned flux files that, if present in the same 
subdirectory where the problem deck resides, will be automatically read at the start of the 
iteration sequence.  A message indicating the use of preconditioning file read operations is 
indicated in processor output files.        
 
SSN-SN Acceleration.  Spcial access is provided in PENTRAN to link to any Simplified 
Discrete Ordinates (based on Simplified SN equations (SSN), which are an approximation to 
the transport equation using “even parity” that only have polar angle dependence).  These SSN 
equations result in a diffusion-like operator; there are limitations on the efficacy of the SSN  
method, and the user should be aware of these.  Access to SSN  setup is available by placing 
keywords into the “Title” line of the PENTRAN problem deck; this approach provides a 
methodology for preconditioned acceleration to reduce the iterative spectral radius.  Longoni 
successfully applied his FAST- SSN  (Flux Accelerated Simplified Transport) technique with 
PENTRAN to achieve speedup in several problems (Longoni, 2004).  As with REPRO, A 
message indicating the use of preconditioning file read operations is indicated in processor 
output files.      
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Discontinuous Grids.  In 3-D 
discrete ordinates (SN) transport 
methods, it is desirable (and at 
times necessary) to use 
discontinuous spatial grids in 
coarse cells or at material 
interfaces.  On a single 
processor machine, variable 
meshing permits high definition 
in regions of interest, with 
coarse grids used in less 
important regions.  In parallel 
processing, variable meshing can be used to reduce load imbalances in problems spatially 
decomposed over large processor arrays.   
 
In a typical SN iterative solution scheme, a source iteration is performed, followed by sweeps 
in angular flux for each discrete ordinate using a spatial differencing scheme.  As the sweeps 
progress through the various spatial grids in a problem, particle conservation must be 
maintained at any discontinuous grid interfaces.  Typically, this is accomplished using a 
simple balance of particles streaming across a boundary surface, resulting in a zeroth order 
approximation.  This procedure works well in the case of sweeps progressing from fine grids 
to coarse grids; however, a loss of information occurs as angular sweeps progress from coarse 
grids to fine grids.   
 
TPMC.  PENTRAN uses the Taylor Projection Mesh Coupling (TPMC) scheme for an x-y-z SN 
method that attempts to mitigate the loss of angular flux information as sweeps are made 
from coarse to fine grid interfaces.  Note that the relationship between surface and cell 
averaged angular fluxes is determined using a spatial differencing scheme, as already 
discussed.  In the figure above, consider a transfer of angular fluxes from the "A" boundary to 
the "B" boundary, crossing the (y-z) plane in the +x sweep direction.  The mismatch between 
the cells results in a discontinuity that must be resolved while sweeping along angles.   
 
Taylor Projection Algorithm.  To reduce the loss of information that occurs when a transfer 
of boundary fluxes is made from a coarser -to- finer grid pitch, a Taylor Projected Mesh 
Coupling of surface angular fluxes is used.  This TPMC scheme amounts to using the coarser 
A surface angular fluxes to approximate partial derivatives in a truncated Taylor series 
expansion;  the expansion is used to project surface angular fluxes exiting A into B.  Taylor 
interpolation methods have been employed in computational fluids and heat applications, 

 Fig 2.7:  Transfer from “A”  Coarse to “B” Fine where I=1 and J=4 
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but often with difficulty in maintaining strict conservation (Kallinderis, 1992, and Phillips and 
Schmidt, 1984). 
 
The first step in the TPMC scheme involves the direct transfer of the angular fluxes exiting 
cell A at point o, OutAψ , to the angular flux entering a B cell at point p, which is InB .  Using a 
truncated Taylor expansion from surface centers connected between A and B: 
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With partial derivatives approximated by central differences computed from A boundary 
values: 
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Note that the scale factors b and c are the relative fractions of cell A width connecting surface 
centers along the y and z axes, respectively.  Combining equations (2.63) and (2.641) results in 
 
(2.71)  InB = OutA + b( L − R) + c( T − B)   
 
 
Particle Conservation.  Equation (2.71) permits a simple first order projection of angular 
boundary fluxes exiting from the coarser A cell entering into the finer B cells.  During a 
transport sweep for a given angular ordinate, this process is repeated for all B cell boundaries.  
If a flux projection yields negative values, the absolute value of the most negative angular flux 
projected among the B surfaces is then added into each B surface flux, causing the minimum 
projected flux to be zero.  Because particle conservation during the transfers from I cells of A 
to J cells of B must be conserved, normalized projection fractions fj for each B surface angular 
flux are then computed by normalizing all values projected (in Figure 2.7, I=1 and J=4): 
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Particle balance is achieved by first computing the particle outflow from the surface of A:  
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Then, using equations (2.72) and (2.73), the final TPMC projected angular fluxes are obtained 
from  
 

(2.74)           
InBj =

fj $ flow A

m yBj zBj  
 
Note that a traditional, zeroth order projection is obtained by setting the scaling factors b and 
c to zero.  In the event that grids do not directly "match," nearest neighboring cell centers are 
used to project angular fluxes.   
 
Based on test problems, the TPMC scheme provides fine grid fluxes that are 3 times or more 
accurate than traditional zeroth-order methods in cases where a finer meshed region of 
interest (ROI) is surrounded by coarser meshes.  Therefore, TPMC as a minimum mitigates 
some effects of using coarser grids in cells surrounding a ROI.  In more realistic problems 
with steep gradients, the differences between TPMC and zeroth-order schemes are more 
pronounced.  Accuracy of fine mesh fluxes have shown a factor of three improvement in the 
Kobayashi problems using TPMC as opposed to zeroth order coupling in problems using 
discontinuous grids (Sjoden and Haghighat, 2000).  
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CRITICALITY EIGENVALUE DETERMINATION 

Criticality.  An algorithm to determine the criticality eigenvalue of a system, consistent with 
complete parallel phase space decomposition, is in place in PENTRAN.  The existence of the 
criticality eigenvector is mathematically derived from Perron’s theorem, which states that a 
positive matrix has a unique positive eigenvector with a single positive eigenvalue that is 
greater than the modulus of any other eigenvalue for the matrix.  In reactor physics 
applications, the criticality eigenvalue represents the fundamental effective multiplication 
factor ko that dominates the the nuclear system after all higher harmonic transients have died 
away (Nakamura, 1977). 
 
Power-Aitken Iteration.  In PENTRAN,  the outer iteration fission source is based on the 
previously converged inner iteration flux estimate.  The fundamental (criticality) eigenvalue 
ko is determined from a variation of the Damped Power-Aitken eigenvalue iteration, where 
the newest eigenvalue is derived from an Aitken extrapolation (used successively after the 3rd 
iteration) and the relative difference between successive eigenvalue iterates.  Note that due to 
their added parallel storage and synchronization requirements, Chebyshev acceleration 
methods were not considered.  In any one outer iteration in PENTRAN, the criticality 
eigenvalue estimate for iteration t is updated using the following procedure on each 
processor, with the most recent fission source estimate  Qfiss

t (based on the most recent scalar 
flux) weighted with an arbitrary unit weighting vector: 
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An Aitken extrapolation is, (by default) then performed (unless deactivated) if a minimum of 
3 successive iterates are available, where 
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The extrapolation correction t

ok~δ in equation (2.76) is zeroed in the final outer iteration as a 
consistency check to verify that the outer iteration is fully converged.  In PENTRAN, it was 
also determined that a purely statistical convergence check of the last four (4) outer iterations 
should be assessed to guarantee that the fundamental eigenvalue has converged. This was 
found to be essential in a parallel execution.   
 
Therefore, a minimum of four outer iterations are required to yield a solution to a 
criticality eigenvalue problem, regardless of the outer loop convergence criterion.    This 
scheme is a Power-Aitken scheme, allowing convergence to the correct criticality eigenvalue, 
regardless of parallel domain decomposition applied.  Note that the group window option or 
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the restart option, which can be leveraged to conserve memory in down-scatter-only 
transport problems when using the multigroup source iteration, are not available for 
criticality problems, which inherently require all groups to explicitly compute the 
fundamental eigenvalue.   
 
Three Methods of Eigenvalue Reporting. PENTRAN reports three methods of computing 
criticality eigenvalues: 
 

(i) Power iteration eigenvalue and outer source iteration tolerance; Example: 
 
“System keff Single Mesh : 0.957541  tol= 5.0000E-05 

 
(ii) Statistical average of last four power iteration eigenvalues with 2-sigma 

standard deviation; Example: 
 
“System keff  Avg  Last4 : 0.957541  2sa= 0.000001” 
 

(iii) Balance-derived eigenvalue, from assembly of integrated Production divided by 
Loss, integrated over the parallel processing grid with relative balance error; 
Example: 
 
“System Balance (Prod/Loss) keff:0.957538  relbalerr= -3.4835E-06” 

 
The example shown included actual results from a test problem, where it is evident that the 
end result for the criticality eigenvalue was  0.95754 based on the convergence. 
 
In all cases, these three methods of reporting a criticality eigenvalue for the system should be 
consistent; if they are not, then this reduces the confidence that the problem has reached full 
convergence, and the results should be questioned beyond the normal data review process.   
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AUTOMATED PHASE SPACE DECOMPOSITION SCHEDULING 

The key to the parallel scalability of the PENTRAN code lies in its internal structure; 
fundamentally, parallel execution and work allocation is fundamentally established by a 
decomposition weighting vector. 
   

• A transport problem input deck is read and processed by each processor.   
• Following several initialization sequences, the angles, energy groups, and spatial cells 

in the problem are automatically decomposed according to a user-specified 
decomposition weighting vector.  This decomposition vector contains arbitrary 
weighting factors for angular, group, and spatial decomposition.  This vector allows a 
user to "prioritize" the decomposition strategy used in a parallel execution of the 
problem without specifically assigning an exact number of processors (a user can also 
block decomposition in a particular variable, or lock-in any specific number of 
processors, if desired).   

• PENTRAN auto-schedules the decomposition of the problem for the user at execution 
time onto n processors, and self adjusts the number of processes assigned for the 
problem being solved.  However, this is performed within the restrictions allowed by 
the user's decomposition weights.   

• If the weighting scheme specified by the user leads to an odd number of processes 
scheduled on an even number of processors, a halt statement for “processor utilization 
below 100%” is issued, with a message to the user to change the decomposition weights 
or the allocated number of processors.   

• The number of processes must be greater than or equal to and divisible by the number 
of processors.   

• Ultimately, the auto scheduling in PENTRAN leads to a 3-D Cartesian, virtual 
processor array topology, with angular, group, and spatial decomposition axes.  The 
phase space of the problem is essentially projected onto this virtual processor topology 
during parallel execution.  

 
 
 
 
                 
 
 
 
 
 
 
     
    Fig 2.8  3-D Cartesian Virtual Processor Array 
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ADVANCED PROCESSOR COMMUNICATIONS 

Central to any successful parallel code is a consistent and efficient  communications 
structure.  This is accomplished in PENTRAN through the use of MPI-generated custom 
Communicators constructed for selected levels of processors assigned among the angle-
energy-space Virtual processor array.   
 
Communicators.  Efficient communications over an arbitrary domain decomposition are 
obtained from the use of complex inter-process communicator buffers (or communicators as 
they are called in MPI).   
 
These communicators are generated on each process during the distribution of problem data 
over the virtual processor array completely transparent to the user.  They enable 
communications among specific subgroups of processors in the virtual topology.  For 
example, consider a scenario where angles, groups, and sweeps are fully decomposed on a 
processor array.  If a scalar flux is required for all groups in a particular coarse mesh cell, the 
reduction operation to collect all of the angular fluxes for quadrature in their respective 
groups uses a communicator that links processors "owning" the groups and angles for that 
specific coarse cell.  PENTRAN builds communicators to selectively communicate with 
selected processors containing: 
 

 All angles for a specific coarse cell and energy group 
 All energy groups and angles for a specific coarse cell 
 All coarse cells and angles for a specific energy group  

 
Communicator Limits.  On some MPI implementations, an upper limit of a few thousand 
communicators may be in place; this limit often varies, dictated by the finite number of 
possible unique communicators available and system memory allocated for these tasks.   
 
To retain maximum portability and scalability, PENTRAN will automatically minimize the 
number of unique communicators “built” during each problem execution, re-using 
communicator buffers through “aliasing” if they contact the same set of processors.  Any 
excess communicator buffers that are not useable by the processor (null value) are 
immediately released back to the available MPI communicator buffer (memory) pool.  
Communications overhead is further minimized in PENTRAN  by array packing routines.  All 
array data transferred among processors is packed by the sending processor, then unpacked 
by the receiving processor after communications are completed.  Embedded tags in the array 
pack ensure that data arriving from one processor to another processor are correct, 
maintaining message passing data integrity.  Embedded tags offer unique parallel algorithm 
checks for code developers, because large scale parallel code debugging can be quite 
challenging; tags can be useful in detecting parallel execution errors, since new code and data 
features added that pass serial tests, but cause parallel data faults are usually flagged by these 
data checks during parallel execution.     
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PROCESS MAPPING, DYNAMIC MEMORY ALLOCATION & TUNING 

In order to handle complete decomposition, processes in PENTRAN must be tracked.  
Imagine the case of a scatter and reflection out of one processor onto another, from ordinate 
to ordinate.  With thousands of ordinates, millions of mesh cells, tens of energy groups, one 
must have precise mapping of parallel stored sata.  This is accomplished in PENTRAN using 
Process Mapping Arrays.   
 
Parallel Process Mapping Arrays and Message Passing: 
  

• Following the assignment of the processors and communicators in the virtual 
processor array, phase space variables assigned to a particular processor are tracked 
and computed independently. 
   

• Local variable dimensions (when necessary for memory conservation) and process 
mapping arrays are used on each processor.  This allows all memory to be completely 
partitioned on each processor for all medium (and fine) mesh variables, including 
memory intensive angular, scalar flux, and current (J) variables.   

 
• Process mapping arrays contain the global coarse mesh cell, energy group, angular 

sweep octant, and octant ordinate ( Ω̂ ) indexes that are locally processed in locally 
dimensioned arrays.   
 

• The ‘kpmap’ Array.  A global processor “reference” mapping array (kpmap) is also 
maintained by each processor (allocated identically on each processor during problem 
setup), and permits access to the processor number containing any coarse cell, group, 
sweep octant, and octant ordinate.  This permits “send” and “receive” processors to be 
readily identified if point to point message passing is required, as occurs in the case of 
reflective boundaries with angular decomposition, or with spatial decomposition.   

 
• When message passing is performed, global index references are used during 

communications among processors.  After messages are received, global variable array 
indexes are translated back to local indexes for storage.   

 
• Messages and various communications are continuously cross-checked using the 

(kpmap) processor reference mapping array, the process mapping arrays, and the 
translation routine to verify data integrity.   

 
• Because the process mapping arrays store global angular, energy, and spatial variable 

indexes for locally stored variables, any schemes that require specific ordering can be 
readily accomplished.  Therefore, rearranging the order that global variable indexes are 
assigned and stored in the process mapping arrays alters where and in what order they 
are locally processed. 
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Memory Estimate/Processor. The bulk of memory (per processor) in PENTRAN is 
consumed by storing the cell centered and surface angular fluxes.  Grid arrays only need be as 
large as required for the largest spatial grid in a single coarse mesh cell, the total number of 
local energy groups, and the total number of local angular sweep octants for the problem 
being solved.  Therefore, larger problems can be solved directly in PENTRAN by adding more 
processors with increased decomposition.  The amount of memory, in bytes, consumed by 
each processor prior to optimization by memory tuning, is approximated by  
 
(2.77)  Memory Bytes ~ λ  maxcmc  maxfmc  maxglc  maxswp  maxqdm 
 
where the parameters represent a scaling constant λ , the maximum local coarse meshes, fine 
meshes per local coarse mesh, local groups, local octant sweeps, and angles per octant (bound 
by angular quadrature method), respectively, for a processor.  From experience, a few percent 
of processor memory should be reserved for system level processes, caching, etc, depending 
on the machine; therefore, the left hand side of equation (2.77) should be regarded as “free” 
memory per processor.  The constant λ  is typically between 50 and 60 for the single precision 
version of PENTRAN, depending on the compiler.  This number could be far less with the 
automatic memory optimization in PENTRAN (discussed below).  Note also Equation (2.77) 
assumes that the group window or restart options (which can provide a significant reduction 
of memory requirements) are not used.  These options can save a large amount of memory for 
a fixed source problem.   
 
Impacts to Parallel Performance.  The amount of memory required for a specific 
calculation is initially estimated by the code when the parameters located at the top of an 
input deck are provided. The user should avoid setting some parameters to values 
significantly greater than required for a problem. 
 

• Overall memory estimate.  This is only an estimate provided by the code since it 
occurs prior to any optimization , and is compared to the maxmem parameter to 
determine if the memory required exceeds the available memory.  Therefore, knowing 
the memory bound per node, one can set parameters to cover a general problem type, 
and determine how many processors are required for a problem, depending on the 
decomposition approach used.  Memory Tuning occurs after process assignments have 
been made, and represents the true memory requirement, per processor, for the 
problem being considered.   
 

• Generally, a cluster with 8 or 16 processors having at least 2 Gb of allocatable RAM per 
processor is considered a reasonable cluster.  Note that this means one quad-core node 
should have ~8 Gb available, allocatable uniquely to each processor in 2 Gb parcels, for 
MPI distributed parallel problems.  
 

• Parallel efficiency can be directly affected by parameter settings.  Some automated 
help is available for properly tuning parameter settings to avoid problems in allocating 
more memory than needed, particularly for array buffers for parallel message passing.  
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Also, see the discussions below on “memory tuning” and “automated parameter 
repair”. 
 

• The following parameters directly affect message length (and therefore message 
passing time):  maxleg, maxgrp, maxfmc (and therefore maxmmc) , and maxqdm.  
The first two parameters are the maximum Legendre moment required and the 
maximum global number of energy groups required, respectively.  The next parameter 
is the maximum number of fine mesh cells per coarse cell, and the last parameter is 
the number of directions per octant on the unit sphere for each fine mesh.   

 
• The minimum total number of equations in a the transport matrix being solved in 

PENTRAN can be determined by the product of  (total_fine_meshes * 
total_energy_groups * unit_sphere_directions).  For example, a problem containing 
100,000 fine meshes among 5 energy groups using S24 Legendre-Chebychev 
quadrature (a minimal whole body phantom medical physics simulation) totals 312 
million equations, solved in a 312 million by 312 million element matrix.  Of course, 
PENTRAN stores these equations, along with the accompanying overhead of flux and 
source moments, etc, across the allocated processor array.  PENTRAN also has options 
of a group window (for fixed source problems, parallelizable within the window) for 
fixed source problems to minimize the memory requirements.      

 
• Since it is conceivable that a heterogeneous parallel cluster could be used to run 

PENTRAN under MPI, parameters should be set to allow the code to fit within the total 
memory on the minimum capacity machine, since the same code must run on all 
machines simultaneously, albeit independently.   

 
• Note that all important parameter settings and total memory demand are also 

provided in the run logfile for inspection by the user.   
 
 
Parallel Scaling.  Some variables in PENTRAN are dimensioned using an integral memory 
approach for efficiency, as they would provide a small memory savings, yet add appreciable 
message passing overhead.   
 

• Energy group coarse grid data and coarse cell spatial mapping data are stored using 
global problem dimensions on each processor.  Partitioned memory practices are 
applied when the memory savings potential is large, as in the case of medium/fine 
mesh scalar and angular fluxes.   
 

• Overall, due to a partitioned memory structure, the PENTRAN code has true data 
parallelism for memory intensive arrays (the angular and scalar fluxes), and is 
therefore a fully scalable code.   
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• Larger problems require more processors, although a capability of complete phase 
space decomposition in the angular, energy, and spatial variables with discontinuous 
meshing offers great flexibility in how subdomains are created to render a parallel 
transport solution.   

 
o Angular decomposition is first on a unit sphere sweep octant basis (as 

dimensioned by the maxswp parameter, and afterwards by the individual 
ordinate number in each octant, set by the maxqdm parameter ) 
 

o Energy group decomposition is on a group number basis (local groups 
dimensioned by the maxglc parameter, global groups dimensioned by the 
maxgrp parameter) 

 
o Spatial decomposition is accomplished on a coarse mesh basis (locally allocated 

coarse meshes are dimensioned by the maxcmc parameter, while global coarse 
meshes by the maxgcm parameter) 

 
• The most efficient parallel decomposition scheme is, however, different for each 

problem, and is difficult to anticipate; some progress has been made in this area 
through problem and decomposition analysis by Patchimpattpong and Haghighat 
(2002).   

 
 
Automated Parameter Repair.  This feature was added to PENTRAN to assist the user in 
determining parameter settings that will be tuned to a particular parallel run.  This is 
accomplished by having the user place negative values (e.g. -1, -2 …) for each element in 
decmpv, “locking in” the number of processors intended for angular, energy, and spatial 
decomposition, respectively, and then if the maxmem parameter is set as a negative 
memory value, then the code will analyze the parameter settings and reset the 
Fortran90 parameters to the best values suited for the parallel run.  The resulting 
problem deck will then be ready for parallel execution on the total number of processors 
(which should equal to the absolute value of the product of each decmpv element).  
 
While the automated parameter repair is robust, it can fail if the maxarr parameter is set too 
low—this dimension governs the maximum count of numbers read in during input for any 
general input field.  Should a problem occur, it is recommended that the user increase the 
maxarr value.  Also, the nctlim parameter is the maximum count of FIDO characters read 
during input for any general input field.  Both of these parameters are used to interpret the input 
deck so that parallel processor work assignments may begin, so it is important that these 
parameters span the number of entries/FIDO characters read for the largest containing variable 
(the largest block often is in BLOCK V--Source).   
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Memory Tuning.  PENTRAN incorporates an automatic memory tuning feature which 
optimizes the amount of memory allocated for large storage variables (e.g. angular fluxes, 
etc).  This minimizes the memory required per processor, yet is consistent with a Fortran-90 
architecture. 
 

• In the original architecture, PENTRAN used a simple “upper-bound” parameter 
dimension for the number of fine meshes contained in each coarse mesh.  This tended 
to “waste” memory when defining only a small number of fine meshes in a coarse 
mesh in some parts of the problem geometry.   
 

• To facilitate minimizing memory use, PENTRAN has a “Large Coarse Mesh/Small 
Coarse Mesh” two-array system, where the large coarse meshes still use a dimension of 
the upper bound specified by maxfmc.  However, prior to execution, PENTRAN 
performs a “memory tuning” function that analyzes the entire problem workload, 
looking at the average and standard deviation of the global spatial mesh in each coarse 
mesh, and allocates a “Small Coarse Mesh” dimension< maxfmc that best optimizes 
the amount of memory required to store the problem.   

 
• This can save a sizeable amount of memory, as it “tunes” the memory allocation based 

on the spatial fine mesh distribution assigned to each machine.  Therefore, each 
machine can, if spatial decomposition is selected, have a completely different mix of 
“large” and “small” coarse mesh sizes, depending on the work assignment for that 
processor.   

 
• The “Memory Tuning” option has allowed researchers to solve extremely large 

problems through better use of machine memory.  Also, if a problem does not fit on a 
machine with angular decomposition, it may well fit with spatial decomposition and 
load balancing activated, since a balanced load with memory tuning can flatten the 
memory required on each machine (note: this can introduce inefficiency by reducing 
the convergence rate, since load balancing affects the order of boundary value 
updates). 
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KEY NOTABLE ISSUES FOR THE USER  

The user should pay attention to the following issues in solving a problem with PENTRAN in 
parallel:    
 

 Be aware of parallel parameter limits; The  Automated Parameter Repair feature for 
properly setting up minimum memory parallel allocations using parameters is a very 
useful one, with important rules 
 

o Use large enough maxarr and nctlim parameters to make sure the problem can 
be read in properly 
 

o maxlin should also span to at least the number of input lines in the problem 
input deck. 

 
o As an example, if always using 2 processors for angular decomposition (which 

may be good to do since it does not degrade convergence in Cartesian geometry 
with vacuum boundaries), the maxswp parameter (that defines the number of 
octants locally stored) can then be set to 4 rather than 8, since a maximum of 
just 4 sweep octants will be processed on each machine.   

 
o Also note that the number of medium meshes (maxmmc) should always be set 

equal to the number of fine meshes (maxfmc) per coarse mesh, as currently 
required for the Simpified Multigrid method (since these dimensions currently 
map to the same arrays). 

 
 

 Note that coarse mesh boundaries define subdomains for parallel spatial 
decomposition, acceleration methods (rebalance and multigrid), and assignment of 
the numerical differencing scheme used.   

 
o Avoid using small numbers of meshes inside each coarse mesh, since a processor 

synchronization is required after each processor completes a coarse mesh (if 
reflective boundaries and/or spatial decomposition is used).   
 

o Use at least 1,000 fine meshes/coarse mesh; however, more is generally better--
this makes the calculation increasingly coarse grained.  A reasonable target is 
8,000-10,000 fine meshes per coarse mesh.  Large deviations of this number 
between coarse meshes may lead to load imbalance with spatial decomposition. 

 
 TPMC is used on each surface of each coarse mesh connected to other coarse meshes.  

It is advisable to use discontinuous meshing where needed, since TPMC is always 
being paid for, and memory tuning will attempt to optimize storage. 
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 Use of angular and spatial (or both) decomposition can be beneficial to rebalance 

acceleration, which can offer a significant increase in convergence (where it would not 
on one processor).  This is due to ADS sweep ordering/partitioning, and will often 
offset the convergence penalty incurred from spatial decomposition.  

 
 DZ may incur more negative fluxes with increased spatial decomposition, and can 

exhibit non-convergence in parallel executions.  In recent studies with optically thick 
problems, better performance was obtained by starting with DTW differencing as a 
first scheme in the adaptive algorithm, followed by application of EDI (by PENTRAN) 
as needed. 

 
 Avoid setting the maximum allowable DTW weight (using the dtwmxw setting in 

Block 4) too low--a premature shift to EDI could degrade convergence in source 
regions, since the EDI scheme performs best in streaming cases.  Still, if the maximum 
weight is still high and a shift is made, it is clear that EDI is required.  For advanced 
users, don’t forget that meshing can be locked in or upgradable within a coarse mesh, 
depending on the scheme used. 

 
 If not using group decomposition, use the standard multigroup iteration method by 

setting methit=1.  This method allows for the most efficient use of particle 
downscattering by continuously accumulating the scattering source through groups g -
1 during convergence of group g, which can be a great savings when performing a P3 or 
higher calculation.   

 
 With complete group decomposition, the Hiromoto-Wienke 1-level scheme may be 

best, selected with methit=2.  (These iteration options are discussed in more detail in 
the next section).  

 
 Be careful in using group decomposition on few group problems if the scattering ratios 

vary greatly.  Since few group problems are strongly coupled, one processor could tie 
up the rest with many iterations in a group with a high scattering ratio.  It can be 
shown through Fourier analysis that a high scattering ratio sets the upper limit of the 
spectral radius for the transport source iteration.   This effect may be ameliorated by 
activating automatic load balancing and/or multigrid acceleration, although at the 
same time, load balancing can also inhibit convergence in some cases.  

 
 Use of widely varying medium and fine grids can hinder acceleration from the 

multigrid--a ratio of two fine/medium mesh along each axis is generally 
recommended.  In cases where multigrid is not as effective (e.g. low scattering ratios), 
use a low medium grid tolerance just to obtain a good first guess on the fine grid.  
Also, a medium grid tolerance that is set too small can be beyond the achievable 
infinity norm error due to truncation error of the medium mesh differencing, and may 
never converge. 
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 In fixed source problems with multigrid, the user is responsible for properly defining 

the source, including the total number of source particles.  The meshing on the 
medium grid in the source region must be set so that the source is resolvable; 
PENTRAN will balance the volumetric source strength to be consistent for the slash 
multigrid iteration, provided there is a mesh it can alias the source to from the fine 
grid.  A warning will occur is there is no resolvble source on the medium grid. 
 

 Be aware of disk storage requirements.  Scratch files for FIDO input and material mesh 
specification will typically require 5 bytes of disk space per mesh per processor; 
typically, this can be stored in /tmp space on each processor.  A typical run with binary 
scalar flux outputs can require disk space for O{(total # of meshes) * maxgrp * 60 
Bytes} bytes.  (note this is if Memory Tuning is not considered). 

 
 Also, exercise caution when selecting high scattering moment dumps or angular flux 

binary dumps--file space could be quickly saturated. 
 

 PENTRAN should be executed in parallel to the most practical extent possible if the 
problem is large.  Restricting the use of the code to a single machine (when not already 
constrained by memory due to storage requirements) forfeits the effort required to 
perform all of the complex mechanics necessary for complete phase space 
parallelization.  Some of these tasks include problem decomposition and distribution 
routines, partitioned memory mapping, range checking, global-local and local-global 
mapping, and the overall coarse grid based, discontinuous mesh code structure.   
 

 Although there are some logical by-passes, many tasks required for parallel execution 
in PENTRAN are also carried out in serial as well, and amount to what is considered 
parallel overhead.  PENTRAN was developed with the intent of solving large problems 
on a distributed parallel cluster that could not be solved in a practical time or fit under 
the memory and/or disk constraints of a single CPU. 
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SOURCE ITERATION SCHEMES 

Two source iteration schemes are available: a “multigroup” source iteration (the GOFMGM 
routine) and a Hiromoto-Wienke source iteration (the GOFCHM routine).   
 
Multigroup Source Iteration.  The GOFMGM “multigroup” routine (see Block IV, selected 
using methit=1) iterates to convergence sequentially through each group, from group gi to gj, 
where (i<j), with an added convergence confirmation of the local scattering source if 
upscattering or group decomposition is indicated.   
 

• Progression to the next (local) group is not performed until convergence in the current 
group is obtained.   
 

• The convergence of the scattering source is computed using a norm based on the 
relative change of the integral sum of the angular scattering source for all locally 
processed coarse mesh cells, groups and angles.  This is used only in the event of 
energy group decomposition with this iteration scheme.  Note that energy 
decomposition with this scheme is not recommended. 

   
• Convergence on the scattering source is checked following reported convergence in all 

groups.  Parallel execution with any level of decomposition using the “multigroup” 
source iteration scheme is available without restriction.   

 
Hiromoto-Wienke One-Level Source Iteration.  The GOFCHM routine was designed to be 
consistent with the one-level TPCS chaotic scheme of Hiromoto and Wienke (1989), and can 
be implemented (see Block IV, selected using methit=2)  with any phase space 
decomposition strategy in PENTRAN.  Excellent parallel speedups have been demonstrated 
using various combinations of decomposition in the angular, energy, and spatial variables 
using this scheme (Sjoden and Haghighat, 1996).   
 

• In this Hiromoto-Wienke scheme, each processor completes a source iteration in a 
single pass through a number of locally processed groups.   
 

• Group flux moments are updated by a summing reduction among participating 
processors for the next scattering source calculation, but convergence is tested only on 
locally processed groups; this is followed by a new iteration, if needed.   

 
• On a shared memory machine, this iteration procedure is truly chaotic, as group flux 

moments are updated for all processors instantaneously, resulting in chaotic 
convergence among the various groups scheduled on different processors.  That said, 
on a distributed memory architecture, this iteration scheme is “chaotic” in name only 
since the group flux moment reduction is required following a sweep, which effectively 
acts as a processor synchronization.  However, since convergence is tested based on 
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locally processed groups, the user is able to identify the relative speed of convergence 
in each group, as PENTRAN reports when convergence is achieved on each processor.   

 
• Computation for all processors must continue, however, until all tasks are converged, 

as message deadlocks will occur if one participating processor is deliberately stalled. 
 
Note: In general, if group decomposition is not used, the multigroup scheme will provide for 
faster convergence to a solution, with some exceptions.  First, if there is upscattering, tests 
have demonstrated that the Hiromoto-Wienke scheme works best, since all local groups are 
iterated through sequentially, updating the upscatter components continuously.  Also, faster 
convergence with the Hiromoto-Wienke scheme resulted when the simplified multigrid 
acceleration was used for any type of problem (Sjoden and Haghighat, 1996).  As more users 
apply the code to a variety of test problems, this contributes to the experience and bounds 
the efficiencies of the code. 
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BENCHMARKING AND PARALLEL PERFORMANCE 

Code Benchmarks.  Several problem benchmarks computed for one, two, and three 
dimensional, multigroup, multi-region, anisotropic problems have been tested using 
PENTRAN with DZ and DTW differencing and parallel domain decomposition.  In particular, 
exact agreement (within the convergence tolerance) was obtained between solutions from the 
TWOTRAN-II , TWODANT, DORT/TORT, and THREEDANT single CPU production codes 
and parallel PENTRAN solutions.  Similar agreement was demonstrated for criticality and 
adjoint test problems compared with TWOTRAN-II.  An independent criticality benchamark 
using Hansen-Roach cross sections was performed with PENTRAN against MCNP in 
multigroup mode.  The criticality eigenvalues rendered by each were the same within the 
limits of the cross sections and problem data.  When comparing with the two dimensional 
codes tested, PENTRAN calculations were performed in 3-D with reflective boundary 
conditions along one of the three (x-y-z) axes. With single variable and hybrid phase space 
decomposition strategies, 3-D test problems were solved using dedicated timing benchmarks 
using the Cornell Theory Center IBM-SP2.  Significant speedups were demonstrated, with 
high estimates of parallel code fraction (between 95% and 98%, based on Amdahl’s Law).   
 
Validated Benchmarks.  An experimental PENTRAN benchmark established by OECD/NEA 
modeling the complete Venus-3 reactor in 3-D has been performed. The Venus-3 reactor is 
owned and operated by SCK-CEN nuclear energy research laboratory, located in Mol, 
Belgium.  This facility houses Venus-3, a zero power research reactor designed to test partial 
length fuel assemblies and various test fuels.  The core includes sixteen "15x15" sub- 
assemblies (as opposed to the typical "17x17" type).  A cross section slice of the z-level 2 
PENTRAN spatial mesh distribution through the Venus-3 reactor model (generated by 
PENMSH) is provided in Fig 2.9 below.  Although each assembly rack has fewer pins, the pin-
to-pin lattice pitch is 1.26 cm-- resembling a conventional assembly.  Therefore, the Venus-3 
facility serves as a practical model of a PWR reactor.  Comparing 370 experimental reaction 
rate measurements from nickel, indium, and aluminum dosimeters, 95% of the PENTRAN 
calculated-to-experiment (C/E) values were within +/-10%, with the remaining 5% to within 
+/-15%.   Therefore, PENTRAN agreement with experimental flux measurements in the 
Venus-3 facility was excellent, and compared well with other codes (see Figs 2.10 to 2.15.4).  
This PENTRAN solution was rendered in only 1.5 hours on 32 SP2 machines.  Other validated 
problems presented here include an OECD/NEA Kobayashi Benchmark, a Dry Storage Cask, a 

    Fig 2.9  Venus-3 Z-Level 2 rendered by PENMSH 
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Prompt Gamma-Neutron Activation Analysis (PGNAA) device, a BWR Reactor, a He-3 
detector system, an HEU Criticality Benchmark, a MOX 2-D & 3-D OECD/NEA benchmark, 
an X-ray room, and a CT Scan Simulation.  Another application considered was a 
surreptitious WGPu problem as a Homeland Security demonstation. 
 
 
 

 

 

 

 

 

 

Fig. 2.10.  PENTRANTM simulation of VENUS-3 Reactor Dosimetry Benchmark Experiment, 
(Left) Discretized geometry, 85,000 cells, 26 Energy Groups, P3-S8 Discrete Ordinates, (Right) 
Group 1 Flux Solution.  The 26 group calculation required 1.4 hours on 32 processors of an IBM-
SP2 computer achieving 84% Ep. (Haghighat, Abderrahim, and Sjoden, 2000). 

 

 

 

 

 

 

 

 

 

Fig. 2.11.  VENUS-3 Calculation to Experiment (C/E) comparison of 370 experimentally 
measured neutron spectral reaction rate foils (using Ni, In, Al dosimeters) to reaction rates 
computed using PENTRAN (P3-S8 26 group-dependent) fluxes. Note 95% of the 370 C/E within 
+/-10% of experimental measurement (most were within 5%); 5% of the 370 C/E within  +/-15% 
(associated with partial length fuel). (Haghighat, Abderrahim, and Sjoden, 2000). 
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Fig. 2.12.  VENUS-3 Calculation to Experiment (C/E) comparison for OECD/NEA “Venus-3” 3-D 
Benchmark Problem showing results for Equivalent Fission Flux for the In-115 inelastic scatter 
reaction;  PENTRAN results cmpare well with other codes.(OECD/NEA Nuclear Science 
Publication: “Venus-1 and Venus-3 Benchmarks”, 2000).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       Fig. 2.13. Kobayashi Benchmark Problem Set participants and Code methods 
   (Kobayashi, et. al., 2000). 
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Fig. 2.14.  Dog-Leg Void Duct Problem, mesh distribution/solution ( Left); Calculation to Exact 
(C/E) comparison for AEN/OECD 3-D Kobayashi Dog-Leg Benchmark Problem with Zero 
Scattering at y=95 cm, z=35 cm (Right); PENTRAN was able to render an accurate problem 
solution without using a first collision source (see Fig 2.15.6 below), required by several others 
(Kobayashi, et al, 2000), and (Haghighat, Sjoden, and Kucukboayci, 2001). 

 

 

 

 

 

 

 

 

Fig. 2.15.  PENTRANTM Solution of Dry Storage Cask for Spent Fuel Storage. (Left) CASK Group 
1, (Center) CASK Group 22 (thermal neutrons), and (Right) A3MCNP model of  Dry Storage 
Cask, Height  610 cm, Shell O.D. 340 cm, Shell I.D. 187 cm, Loaded Weight 162.4 MT). This 
model consisted of 318,426 fine meshes solved with P3-S12 quadrature with 22 neutron and 18 
gamma energy groups on 8  2.4GHz Intel Dual Xeon machines in 165 hours (Shedlock and 
Haghighat, 2004). 
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Fig. 2.16.  Dry Storage Cask Dose comparison of PENTRANTM , A3MCNP, and MCNP simulation 
results for Dry Storage Cask for Four Annular Segments Near Source Centerline (300 cm).  
Multigroup Monte Carlo and Sn results differ by only 5% (average). (Shedlock and Haghighat, 
2004). 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 2.17. Model of Waste Drum in Prompt Gamma-Neutron Activation Analysis (PGNAA) 
Device (Left); PENTRANTM Sn Mesh distribution for waste drum in simulation for 
Westinghouse Corp. (Center); Adjoint function distribution for Pb gamma line at E= 1.023 MeV 
(Right). PENTRAN results were used to compute reaction rates and were in agreement with 
experimental results within experimental error (Petrovic, et. al., 1999). 

 

 



 

                                                         74                              Theory and Application 

 

 

Fig. 2.18. Comparison of Detector LLD for Model of Waste derived from calculated detector 
response using PENTRAN adjoint distributions folded with Monte Carlo MCNP n-gamma 
distribution with the experimental values. (Petrovic, et. al., 1999). 

 

 

 

 

 

  

 

 

 

 

 
 
 
Fig. 2.19. BWR Core Shroud Problem.  This is a simulation of the BWR reactor and Core Shroud 
Assembly, with baffles, jet pumps, steam voids, etc.  (Left) The 67 Group P3-S8 coupled neutron-
gamma calculation using 265,264 fine mesh cells was solved in 12 hours on 48 IBM-SP2 
processors, 8 processors angular, 6 processors spatial decomposition. (Right) Displacement per 
Atom (DPA) in the core shroud shows intense radiation damage where fuel is close to the 
shroud. These results were verified independently by Monte Carlo computations; multigroup 
(BUGLE-96) PENTRAN values were within 5-15% of continuous energy MCNP values. 
(Kucukboyaci, et. al, 2000). 
 
 
 
 
 

Contaminant (Metal)

Max. Relative 
Difference 

(calculated-to-
experiment)

Estimated 
Experimental 
Uncertainty

Low Limit of 
Detection (LLD)

Hg 12% 14% 9 ppm
Cd 6% 10% 115 ppm
Pb 19% 20% 4,400 ppm
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Fig. 2.20.  Computational He-3 Detector Design Experience; this work focused on the 
determination of predicted neutron detector response accomplished using neutron importance 
derived from an adjoint discrete ordinates (SN) transport calculation.  A hypothetical detector 
apparatus, intended to detect fast neutrons, was modeled using He-3 tubes with graphite 
moderation using the PENTRAN 3-D multi-group discrete ordinates parallel transport code 
system. (Left) He-3 fast neutron detector schematic with He-3 tubes positioned at 15 cm radius; 
(Right) PENTRANTM mesh distribution of He-3 detector assembly at slice z=0 cm. (Sjoden, 
2002). 
 
 
 

 

 

 

 

 

 

Fig. 2.21. He-3 Neutron spectrsl detector efficiency comparing mutiple MCNP & adjoint 
PENTRAN result. (Sjoden, 2002). 
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Fig. 2.22.  HEU Annular Ring Criticality Benchmark Problem Geometry (Left) 6-Group 
calculation yielding keff=0.994, exact agreement with Multigroup MCNP (reported within +/-
0.001) (Sjoden and Haghighat, 1999). 

 

 

 

 

 

 

Fig. 2.23.  OECD/NEA C5G7 MOX 2-D Benchmark Problem PENTRAN Mesh distribution with 
specific pins represented among 229,551 spatial meshes, S16quadrature (228 directions),7 groups 
(Left), PENTRAN power distribution with keff=1.18760, within <0.1% of MCNP (Top right), and 
relative power difference from MCNP (Bottom Right) average difference is 0.88%, compared to a 
statistical error reported in MCNP results that range from 0.4% to 1.24%.  The 3-D unrodded 
case was also modeled with 946,080 spatial meshes and yielded keff=1.14323, within <0.09% of 
MCNP (Yi and Haghighat, 2004). 
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Fig. 2.24. Schematic for X-Ray Room S4 Simulation using PENTRAN (Left) X-ray dose  for a 
32mAs burst from an 80 keV Diagnostic imaging device (Right); in spite of some ray effects due 
to the low Sn order, dose results near the source were within measurement data uncertainty 
(Sjoden, Gilchrist, et al, 2000). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.25.  CT Scan Simulation using PENTRAN with the built-in “Ordinate Splitting” (OS) 
feature to enhance a particular direction of interest and severely mitigate ray effects.  The 
fundamental CT Scanner Method uses a fan-shaped beam and the uncollided flux is used for 
imaging (Top Left); the PENTRAN model (with air regions removed)showing the ring of 
detectors and phantom tissue body captured in  (Top Center); S20 quadrature set depicted with 
3 segments of OS (from 1 to 25 directions) enhancement on the ordinate near the centerline of 
the detectors (Top Right); High and Low energy (including down-scattered) photon fluxes 
(Bottom Left, Right, respectively). (Brown and Haghighat, 2000). 
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Fig. 2.26.  CT Scan Simulation Results comparing PENTRAN fluxes with 3 segments of 
“Ordinate Splitting” (OS) and  MCNP tallies (+/- 3% rel error) with, without target phantom in 
place. Without OS, S50 angular quadrature is required to yield equivalently accurate Sn results, 
highlighting the importance of the OS methodology (Brown and Haghighat, 2000).    
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
Fig. 2.27.  CT Scan Simulation Timing Results comparing PENTRAN times and specifications 
with MCNP Monte Carlo simulation times (+/- 3% rel error) (Brown and Haghighat, 2000). 
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Fig. 2.28.  Homeland Security “Pu-Ball-in-a-Box” Problem:  (Left) Surreptitious shipment of 4.0 
kg of alpha phase plutonium metal (19.8 g/cc) as an inner sphere of weapons grade plutonium 
surrounded by an outer spherical shell of 3 cm of tungsten metal.  The ball was placed at the 
center of a cardboard box filled with craft packing paper, simulated in our PENTRANTM 
transport model with 60% density cellulose to simulate packing paper/cardboard. The Pu is sub-
critical at keff=0.843 (yielding M=5.37, ML=3.61). (Right) thermal neutron flux colored onto 
mesh distribution; the He-3 tube is hidden by the fine mesh of air surrounding the tube; the 
majority of neutrons that interact with the He-3 tube are well below 1 keV. (Sjoden, 2004). 
 

 

 

 

 

 

 

 

 

Figure 2.29. (Left) PENTRAN Cutaway/exploded coarse/fine mesh detail of germanium detector 
Sn model.  A hyper-fine gamma energy structure isolating 90 gamma lines with Sn adjoint 
transport was used to profile the detector efficiency for gamma energies spanning from 50 keV 
to 3 MeV.  Any level of detector geometric detail can be represented using PENTRAN (Sjoden 
and Ghita, 2008). (Right) Relative efficiency contours for 400-410 keV gamma rays in a standard 
Germanium detector.  Values can be multiplied by 0.000154 to yield space dependent absolute 
efficiency before electronic processing (Sjoden and Ghita, 2008).  
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Figure 2.30. (Left) PENTRAN solutions for the case (c=0.9, g=0.9, L=12) to Ganapol’s ‘TIEL’ 
Benchmark problems [Ganapol, 2006].  The goal of these challenging problems was to provide a 
set of analytical benchmarks in infinite media for a variety of sources (Plane, Sphere, Shell, 
Point) that were highly anisotropic, using a Henyey-Greenstein (H-G) scattering kernel 
requiring up to L=24 scattering order. Ganapol solved these through quadrature of a Fourier 
Transform inversion, so that these problems can unequivocally be used as standards of 
comparison. PENTRAN solutions were accurate to < 0.7% difference relative to the reference 
solutions, and verified accuracy and asymptotic convergence using 3-D Legendre-Chebychev 
quadratures to N=64 and 3-D anisotropic scattering up to L=24 (Ghita, Sjoden, and Ghita, 
2007). (Right) Isotropic point source solution in a highly anisotropic medium Modeled as a 12 x 
12 x 12 mfp box divided into 86,000 fine cells of 5 mm (each side) cells, except for center region 
(0.5 mm on each side in the first coarse mesh.  The source cell (at the origin) was modeled as 
one single fine mesh cell of 0.5 mm size (Ghita, Sjoden, and Ghita, 2007).  

 
Overall, PENTRAN has proven to be a robust and accurate computational tool for a wide 
variety of applications in nuclear science and engineering. 
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PARALLEL PERFORMANCE.   

Several problems were profiled for parallel performance;  these results are presented here.  
Most results are based on selected problems presented in the previous section.   

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.31.  PENTRAN Parallel Scalability Tests for a simple “Box in a Box” Sn simulation with 
upscattering cross sections. Results depict various decomposition methods tested, and the 
speedup curves depict speedup projected with an Amdahl performance curve (See Section 2.1), 
assuming a worst case zero communication overhead (Left) and then assuming an estimated 
linear scaling of communications overhead ratio of Tc/Ts=0.072 on 24 processors (Right).  
These tests reveal that the parallel fraction for PENTRAN depends on the problem and 
decomposition, and is in the range of 0.92 to 0.98.  Other testing on larger problems yielded 
parallel fractions estimated at 0.975 (Sjoden and Haghighat, 1996) and (Sjoden, 1997).  

All results converged to a 1.0E-5 relative tolerance.

  Run

 PENTRAN 
Decomposition 
Strategy

 # Procs 
Angle

 # Procs 
Group

 # Procs 
Space

 #Total 
Procs P

 Sp= 
Speed- up 
Factor

 Ep= 
Efficiency 
(Sp /P, %)

 Comm 
Overhead:  
%  wall-
clock

1 Angular 2 1 1 2 1.9 95 5
              2* Group 1 3 1 3 2.7 90 9

3 Spatial 1 1 3 3 2.59 86 12
4 Angular 4 1 1 4 3.26 82 16
5 Angular-Group 2 3 1 6 4.78 80 22
6 Angular 8 1 1 8 4.3 54 32
7 Spatial 1 1 9 9 5.49 61 21
8 Angular-Group 4 3 1 12 6.72 56 42
9 Angular-Spatial 4 1 3 12 5.76 48 43

10 Angular 16 1 1 16 6.14 38 53
11 Angular-Spatial 2 1 9 18 8.74 49 32
12 Angular-Group-Spatial 2 3 3 18 8.74 49 34
13 Angular-Group 8 3 1 24 7.96 33 64
14 Angular-Spatial 8 1 3 24 6.56 27 53
15 Spatial 1 1 27 27 8.74 32 37

* Average of 2-batch and interactive runs at CNSF
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VENUS-3 PENTRAN Parallel Performance study 

Case No. of 
processors 

Domain 
Decompostion 

Algorithm (A/G/S)1 

Wall-
Clock 
time 

(min)2 

Speedup Efficiency (%)

1 4 4/1/1 551.8 1.00 - 

2 8 8/1/1 311.9 1.77 88 

3 16 8/1/2 153.3 3.60 90 

4 32 8/1/4 84.3 6.54 82 

1(A/G/S) refers to the number of angular, group, and spatial subdomains 

2Time is obtained in a BATCH mode 

Fig. 2.32.  PENTRAN Parallel Scalability Tests for the Venus-3 OECD/NEA Benchmark Problem 
(Haghighat, Abderrahim, and Sjoden, 2000). 

 

BWR Reactor Simulation, PENTRAN Scalability study 

Case No. of 
Directions 

No. of 
Processors 

Domain 
Decomposition 

(A/G/S)1 

Wall-Clock time 
per iteration (s)

1 24 6 1/1/6 30.12 

2 48 12 1/1/12 33.28 

3 80 24 4/1/6 29.52 

4 169 48 8/1/6 36.12 

1(A/G/S) refers to the number of angular, group, and spatial subdomains 

Fig. 2.33.  PENTRAN Parallel Scalability Tests for the BWR Reactor Problem (Kucukboyaci, et. 
al, 2000). 
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Fuel Storage Cask Simulation* 

 

 

 

 

 

*Parallel wall-clock times, speedup, and calculated values per hour of two PENTRAN storage 
cask model calculations as compared to Monte Carlo MCNP calculations 
     
Fig. 2.34.  PENTRAN Parallel Run comparisons with computations needed in Monte Carlo for 
the Spent Fuel Cask Problem.  Note that Monte Carlo simulation yielded tallies at a small 
percentage of locations compared to the complete solution of the phase space rendered using 
PENTRAN (Shedlock and Haghighat, 2004).
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3. PENTRAN INPUT 

PENTRAN INPUT PROCESSING 

All input to the PENTRAN code is performed using an input file read and processed by each 
independent processor.  The filename is always input by the user on processor 1, and if the 
execution is parallel, processor 1 can be set to broadcast the input filename to all other 
processors (if this feature is enabled at compile time).  Parallel input is reported to be the 
fastest means of initializing problem data on distributed memory machines, and typically 
involves less overhead than processing the input data on one process with message passing 
data to all other processors (Gerner, 1995).   
 
For best results, a ‘ppen’ parallel PENTRAN script should be used, the name of the input deck 
in parallel is converted to ‘prb.pen’; the parallel job script (see the Appendix) permits the user 
to use a unique filename, and the script manipulates file names to ‘prb.pen’ and back again to 
the user’s name seamlessly).  With the ppen script, parallel execution on a problem called 
testproblem.f90 with 8 processors of machine ‘mycluster’  is accomplished with:  
 
 mycluster/home/user >   ppen  testproblem  f90  8 
 
Note that a single blank space should separate each field, and the “period” (‘.’) separating the 
file prefix and suffix is NOT used.  If a period is inserted, the script will not perform as 
desired; also, the location of the parallel executable code, assumed to be reachable by all 
processors running MPI, should be set as indicated in the ‘ppen’ script. 
 
To accomplish parallel FIDO data input on each processor that is completely consistent with 
FORTRAN character/numeric data restrictions, a small (typically 5-50 kb) scratch file 
(denoted with a ‘.dat’ suffix) is created.  To avoid file I/O conflicts in a distributed file system, 
a uniquely named scratch file is generated and used independently by each processor; the 
scratch file name (fileprefix(1:5)+ processor# +’.dat’) is based on the processor number.  (A 
uniquely named scratch file is necessary because a FORTRAN compiler may create a default 
un-named scratch file, ‘fort.2,’ for all processes, even during parallel execution).  Although 
independently naming scratch files may not be necessary on all clustered workstation file 
systems, the current treatment prevents having to handle system-unique implementations, 
and prevents “fixes” that in some cases might violate strict ANSI FORTRAN programming.  
These FIDO scratch (‘.dat’) files are only used for FIDO input processing and communicator 
minimization, and can be deleted after problem execution.   
 
Similarly, another set of independent scratch files is created for material specification in each 
coarse mesh.  All material scratch files (‘.mat’) can be deleted following execution.  On 
processor 1, the material file (containing data identical to other ‘.mat’ files) is intended for 
archive and is stored using an input file prefix+’.M1’.   
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The input deck for PENTRAN is designed in a block structure, emulating the block structure 
used in other deterministic code packages (O’Dell, et al, 1995).  After the code parameters for 
establishing the memory on each processor are read in, subsequent input for each block is 
performed via the so-called free-field FIDO inidcators, which includes control characters 
avialable for abbreviated input syntax; these are discussed in more dtail in the next section. 

It is true that most of the issues surrounding the determination of correct parameter settings 
and FIDO commands are eliminated if using the PENMSH-XP automated mesh and input 
generation code (covered in a separate code manual, developed at the University of Florida).  
However, should one wish to understand memory allocation issues, or tune an exisitng deck 
to implement a different decomposition, some discussion is necessary. Overall, the input deck 
is composed of :  

Fig. 3.1. Outline of PENTRAN Parameters/Block Input; in this example, the parameters indicate 
that 8 processors will be used with decomposition among angular (2 processors), energy(2 
processors), and spatial cells (2 processors). 
  
The input deck portion reserved for the parameter cards falls between the first line of each 
input deck, beginning with “PENTRAN CODE PARAMETERS FOR THIS PROBLEM.” The 
parameter portion ends with with “-------------------Start Problem Deck--------------------”.  In 
reality, the labels are “dummy” lines and can contain ANY ASCII phrase, as are the lines that 
contain the names of the parameter labels that serve as a guide for the user. More detail on 
parameters and what they mean are presented in the next section. 

PENTRAN CODE PARAMETERS FOR THIS PROBLEM 
maxmem,  maxpcs,  maxgcm,  maxxsg 
 2000       8        4        0 
maxcmc,  maxcrs,  maxmmc,  maxmed,  maxfmc,  maxfin 
   2        2      100      100      100      100 
maxgrp,  maxglc,  maxswp,  maxqdm,  maxmat,  maxleg 
   2        1        4       10        1        3 
maxsrc,  maxslc,  maxcmr,  maxlin,  maxarr,  nctlim 
   4        2        4      204     40000      20 
----------------------Start Problem Deck----------------------- 
Problem Header card                
Title Card 1  
         : 
Title Card 10  
Block 1: General Problem Parameters  T 
Block 2: Geometry  T 
Block 3: Cross Section Parameters T 
(Optional) Cross Sections (T required if xsecs within input deck) 
Block 4: Control Options  T 
Block 5: Sources  T 
Block 6: Boundary Conditions  T 
Block 7: Print Controls T 
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INPUT PARAMETERS 

In 1997, PENTRAN was modified to allow for adjustable-sized arrays according to ANSI 
FORTRAN-90 standards, which avoids the issue of code recompilations for specific numbers 
of processors, etc, and permits more efficient use of dynamic memory.  The following is an 
example of a parameter card set that should appear at the very top of each PENTRAN input 
deck.  The user must enter the code parameters in a prescribed order for each parameter.  
Note that above each card image of integers is a text "dummy" comment line naming the 
parameters below it.   
 
Note that the “Code Parameters” section at the very top of the problem input is the only part 
of the input deck that will not utilize FIDO notation. To Automatically have PENTRAN 
correct the Parameters specified for the parallel run, see the discussion in “Automated 
Parameter Repair.” 
 

Table 3.1 Sample of Code Parameters at Top of Input Deck: 
 
  PENTRAN CODE PARAMETERS FOR THIS PROBLEM 
maxmem,  maxpcs,  maxgcm,  maxxsg 
 2000       8        4        0 
maxcmc,  maxcrs,  maxmmc,  maxmed,  maxfmc,  maxfin 
   2        2      100      100      100      100 
maxgrp,  maxglc,  maxswp,  maxqdm,  maxmat,  maxleg 
   2        1        4       10        1        3 
maxsrc,  maxslc,  maxcmr,  maxlin,  maxarr,  nctlim 
   4        2        4      204     40000      20 
-----------------Start Problem Deck------------------- 

                                                Desciption of Each Code Memory Parameter  
maxmem  Max Per-Process-allocated Memory,Mb 
maxpcs  Max Processors Allowed for problem  
maxgcm  Max Global Coarse Meshes in problem  
maxxsg  Max Restart Total Groups used 
maxcmc  Max Locally stored Coarse Meshes 
maxcrs  Max Coarse Meshes along any axis 
maxmmc  Max Local Medium Meshes/Coarse mesh 
maxmed  Max Medium Meshes along any axis 
maxfmc  Max Local Fine Meshes/Coarse mesh 
maxfin  Max Fine Meshes along an axis 
maxgrp  Max Global number of Energy Groups 

maxglc  Max Locally stored Energy Groups 
maxswp  Max Locally stored Sweep Octants 
maxqdm  Max Quadratures Angles/Octant   
maxmat  Max Number of Material (xsec) Types   
maxleg  Max Legendre Scattering (xsec)Order  
maxsrc  Max Global number of Fixed Sources 
maxslc  Max Locally stored Fixed Sources   
maxcmr  Max No. of Contiguous CMR/PCR Cells   
maxlin  Max Number of Lines in Input Deck   
maxarr  Max Entries in Any Vector Variable 
nctlim  Max Number of FIDO Chars/Variable

 
Note the following details are important to parameter settings, particularly when there are 
references to global or local variables.  Global parameters refer to dimensions across the 
entire problem, and local variables refer to parameter settings the depend on parallel 
processing decomposition.  Again, note that there is an Automated Parameter Repair feature 
in PENTRAN that will correct these settings for the user if the parallel decomposition is 
defined with the decomposition weighting vector. 
 

• In general, all parameters should be set no higher than necessary to minimize 
overhead. 
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• +maxmem may be set beyond the physical per-processor memory, but allocation past 

the physical memory will result in disk swap, which will ruin parallel performance; it is 
recommended that more processors be allocated rather than exceed physical memory.   
 

• +maxpcs should not be set higher than the number of processors being used for the 
calculation, as this parameter sets up memory buffers (along with other parameter 
data) that enable parallel communication among all machines; setting this too high 
will allocate more memory than is required for parallel message passing, resulting in 
wasted resources and longer message passing packets. 

 
• maxgcm is the number of global coarse meshes in the problem handled among the 

aggregate of all processors. 
 

• maxxsg can normally be set to zero.  It is only used to allocate memory to handle 
restart cross sections in a restart procedure to continue a fixed source transport 
problem.  A restart procedure run enables one to perform a fixed source calculation in 
partial steps, where blocks of groups of downscattered radiation can be computed in 
separate runs.  If using a limited size parallel machine, the restart feature enables one 
to perform a fixed source calculation of a very large problem with subsets of energy 
groups executed in separate steps (see the section describing ‘Restart’).  
 

• +maxcmc is set to be the local number of course mesh cells handled on each 
processor.  This should be less than maxgcm if spatial decomposition is used.  
 

• maxcrs sets the dimension for the maximum stride along any one axis (e.g. stride 
along x, y, or z) for the number of coarse meshes. 

 
• maxmmc should always be set to maxfmc. 

 
• maxmed sets the dimension for the maximum stride along any one axis for the 

medium mesh interval (e.g. stride along x, y, or z) in a coarse mesh. 
 

• maxfmc is the upper limit of the maximum total number of fine mesh cells contained 
in any one coarse mesh, considering coarse mesh cells over the entire problem. 

 
• maxfin sets the dimension for the maximum stride along any one axis for the fine 

mesh interval (e.g. stride along x, y, or z) in a coarse mesh. 
   

• maxgrp is the maximum number of energy groups handled in the problem.  
 

• +maxglc is the maximum number of energy groups locally computed by each 
processor.  For example, if using group decomposition for a 4 group problem 
(maxgrp=4), and executing group decomposition on 4 processors, then set maxglc=1.  
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Note that if using the group window, maxglc should be the number of groups handled 
in the window, typically 1 group. 
 

• +maxswp is the maximum dimension for the number of sweep octants locally stored 
on each machine.  If the run is a serial one, this number must be 8.  Note that if using 2 
processors in angular decomposition, then this number would be 4, since (2 * 4 = 8). 

 
•  maxqdm determines the maximum dimension of octant angles based on the order of 

the quadrature, where the maximum number of angles per octant 
maxqdm=(N(N+2)/8) for a given SN order; e.g. S8 requires that maxqdm=10.   
 

• maxmat determines the dimension of the maximum number of materials, and 
therefore the number of cross sections (macroscopic) read into the problem.   
 

• maxleg determines the maximum dimension for the number of Legendre moments 
that are to be used in the cross section set 

 
• maxsrc determines the maximum dimension for the total number of fixed sources 

that are to be established in the problem.  One source per coarse mesh cell can be 
defined.  

  
• +maxslc determines the maximum local dimension for the number of fixed sources 

that are to be stored locally in the problem.  Without spatial decomposition, based on 
unit numbers of coarse mesh cells, then maxslc = maxsrc.  However, with spatial 
decomposition, it is possible that the number of local sources need not be as large as 
maxsrc.  Again, one source type per coarse mesh cell can be defined.  

 
• +maxcmr sets the parameter dimension for the number of coarse meshes contained in 

the largest size zone for coarse mesh partial current rebalance acceleration. 
 

• +maxlin sets the dimension for the maximum number of lines in an input deck.  This 
should be set at least as large as the number of lines in the PENTRAN input deck. 

 
• maxarr sets the dimension for the largest array that will be encountered, considering 

any field in the input deck 
 

• nctlim sets the dimension for the maximum number of FIDO characters that will be 
encountered , considering any field in the input deck.   

 
*The PENMSH-XP code will include the necessary proper parameter settings in constructing 
the input file (the ‘input deck’) for a 3-D model.  For optimum performance, precise 
parameter settings for parallel exzecution must be made by the user, or adjusted using 
‘Automatic Parameter Repair’ for parallel hybrid options using angular, energy, or spatial 
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decomposition.  The settings that typically  require adjustment after the input deck is 
generated by PENMSH-XP are flagged in the above descriptions using ‘+’. 

AUTOMATIC PARAMETER REPAIR 

To enable PENTRAN to correctly set the F90 parameters at the top of the code deck: 

• Step 1:  Change the number of Mb of memory under maxmem from a positive integer 
to a negative integer 

• Step II:  set the decmpv vector using all negative numbers (locking in the intended 
decomposition).  NOTE: Automatic parameter repair will not be fully effective unless 
each entry in decmpv is < 0. 

• Example:   

o After setting the number of maxmem in the top of the parameter section from 
2048 to -2048 Mb, change the decomposition vector (decmpv in Block I) to 
indicate a negative number of processors for each potential parallel 
decomposition, e.g.   decmpv=-2 -1 -3   which will indicate 2 processors for 
angular decomposition, one processor for group decomposition (no group 
decomposition), and 3 processors for spatial decomposition, with a total no. of 
processors as ABS((-2)(-1)(-3))=6.   

o The negative maxmem value signals the code to perform a parameter 
correction based on the problem’s settings read in.   

o Then the code will automatically set up the correct parameters to minimize 
memory allocation as follows: the total number of processors maxpcs=6, the 
maximum sweeps per processor maxswp=4, maxglc=1 if group window option, 
etc, and maxcmc will be corrected for the maximum local number of spatial 
coarse meshes on each processor.   

o NOTE:  While the Automatic Parameter Repair feature is reasonably robust, the 
parameters maxarr and maxlin must be acceptable values (large enough to 
accommodate reading in the input deck /FIDO arrays) in order for the code to 
properly analyze the input deck. 

 
 
 
 
 
 
 
 
 
 
 



 

                                                        90                                  PENTRAN Input 

 
 
 

FLUX MOMENT PRECONDITIONING   

PENTRAN now incorporates a new option that allows the user to precondition the 0th and 1st 
flux moments in the initial SN source iteration sweep using an effective initial guess to the 
polar angle flux moments to provide acceleration to the SN source iteration.  To invoke this 
procedure, the preconditioned flux moment files must be present in the local execution 
directory, and must be set as indicated below.  WARNING: if present, these files will be 
used regardless of the problem if they are present in the local NFS directory: 
 

• Filename  “precflx1a0” is the Group 1  0th moments in ASCII for the first ~½ of the 
coarse meshes in the problem, free format as follows: 

 
0.958276  <- k-effective (if fixed source problem, enter 1.0 here)  
1           9  <- Starting, Ending Coarse Mesh (CM) numbers (1 to 9) for this 
file 
1     1125  <- Coarse Mesh number 1, 1125 fine meshes in this CM 
8.50036  <- fine mesh #1 flux moment CM#1 
8.44759  <- fine mesh #2 flux moment CM#1 
… 
9.76354  <- fine mesh #1125 flux moment, CM#1 
2       342  <- Coarse Mesh number 2, 342 fine meshes in this CM 
7.43762  <- fine mesh #1 flux moment CM#2 
6.97540  <- fine mesh #2 flux moment CM#2 
… 

 
 

• Filename  “precflx1b0” is the Group 1  0th moments in ASCII for the last ~½ of the 
coarse meshes in the problem, free format as follows: 

 
0.958276  <- k-effective (if fixed source problem, enter 1.0 here) 
10        18  <- Starting, Ending Coarse Mesh (CM) numbers (10 to 18) for this 
file 
10      725  <- Coarse Mesh number 10, 725 fine meshes in this CM 
20.0036  <- fine mesh #1 flux moment CM#10 
18.4476  <- fine mesh #2 flux moment CM#10 
… 
19.6354  <- fine mesh #725 flux moment, CM#10 
11       650  <- Coarse Mesh number 11, 650 fine meshes in this CM 
7.43762  <- fine mesh #1 flux moment CM#11 
6.97540  <- fine mesh #2 flux moment CM#11 
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• Other 0th Moment Filenames: 
 
“precflx2a0” is the Group 2  0th moments in ASCII, similar format as “precflx1a0” 
“precflx2b0” is the Group 2  0th  moments in ASCII, similar format as “precflx1a0” 
 . . . 

 
• Other optional 1st Moment Filenames: 

“precflx1a1” is the Group 1 1st moments in ASCII, similar format as “precflx1a0” 
“precflx1b1” is the Group 1 1st moments in ASCII, similar format as “precflx1a0” 
. . . 
 

Note these files can be automatically generated from a previous transport run using the 
REPRO tool, based on data extraction selection from PENDATA.  Executing REPRO after 
PENDATA then processes output files automatically to yield preconditioned solution files 
(‘precflxXXX’) where, if present in the local directory of execution, will be used by PENTRAN 
in subsequent runs to yield a significant iterative acceleration. 

 
 
 
 
 



 

                                                        92                                  PENTRAN Input 

LARGE PROBLEM RESTART PROCEDURE 

This procedure was developed to allow one to perform an extremely large computation by 
breaking up energy groups in downscatter only fixed source problems.   

In the Restart procedure, flux moments are read as results from previous batch groups, and 
are used to calculate the transfer scattering source inside the code with restart for the new 
group batch.  

A new batch of groups will start with the medium grid if the simplified multigrid option is on, 
although there is only a fine grid transfer source (qinscf). In such cases, the 'closest mesh' 
approach is used by projecting the fine grid source back onto medium grid from the input 
fluxes.   

The cross sections are read in for the global total number of groups to be computed based on 
the maxxsg parameter, since this parameter is set to the ceiling of the number of groups to 
be considered among all multiple restart calculations.  

 

Restart Example:  In a 20 group (total) calculation, if there are ten groups (Group 1 to 
Group 10) in the first restart batch, then the binary flux moment files from the 
initial calculation must be renamed and locally available (see below), and the next 10 
energy groups (Groups 11 to 20) require calculation.  

o This requires all 20 groups to be loaded in from the cross section file for 
the second batch, and therefore the maxxsg parameter must be set as 
maxxsg=20.   

o One may use ngroup=10, 1, 10 to indicate 10 groups starting at group 11 and 
proceeding through group 20, 1 group in the window, with groups 1 to 10 loaded 
as restart from binary files.   

o Note that the same parallel decomposition and number of processors 
must be used to allow the binary files to be read by the correct processor.  

o Depending on the processor ID#, the binary flux moments must be 
named as:  input filename + ’.r’ + processor#.  These restart files have the 
same format as dumped flux moments that are stored as input filename + ’.f’ + 
processor#--these must be renamed for a restart run by replacing the ‘f’ with an 
‘r.’   

o The combfm routine can be used to combine flux moment files for multiple 
pass restarts.  Note: binary files can be very large for large 3-D problems, 
especially so for P3 or higher calculations. 
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FIDO INPUT CONTROL CHARACTERS 

The FIDO syntax was originally implemented in several codes at the national laboratories. 
The following general rules apply for an input deck: 
 
 1 to 79 column line (card) images, no “special columns,” no special ordering, data 

delimiters are a blank space or comma 
 
 All entries following a slash (/) are ignored, and Input is made according to the following 

syntax:  varname=number1  number2...    
 
 Named variables must be input followed immediately by an “=” and the first entry in the 

array field, with no spaces between the “=” and the first array element.   
 
 Any spacing option can be used for subsequent array elements (with or without commas, 

intermixed slashes, etc).  No spaces or commas should be used immediately following a FIDO 
control character (see table). 
 
 No distinction is made between real and integer data, although real entries used for integer 

fields are automatically rounded.  Scientific notation can use upper or lower case “e” for the 
exponent. 
 
 A Block Terminator “ T ” is required (case sensitive) at the end of each data block (do not 

use “t”).  The block terminator should immediately follow one or more spaces after (but 
always on the same line as) the last field data entry. 
 

      Summary of FIDO Array Control Characters  
Control Character   Syntax   Description                             

R-Repeat    nRd    Repeat data d n times 
I-Interpolate   nId d+1  Interpolate n items between d,d+1 
C-sCale    nCd  Scale n previous items by d 
F-Fill+    Fd  Fill the remainder of array with item d 
Y-string repeat+  nYm  Repeat m strings n times   
L-Log Interpolate  nLd d+1 Log Interpolate n items between d,d+1 
Z-Zero       nZ  enter Zero n times 
S-Skip++   nS  Skip the next n data items 
A-pointer set  nA  set pointer to nth data item in array  
Q-Q repeat       nQm  repeat the last m entries n times 
G-G repeat    nGm  same as Q but change sign every repeat 
N-N repeat   nNm  same as Q but invert order every repeat 
M-M repeat    nMm  same as N but change sign every repeat 
X-check entries  nX  check the number of entries against n 
&-string skip+   &  skips to the end of the string 
 
              + Identified but not Currently supported in PENTRAN  
             ++Data items that contain FIDO control characters count as a single entry 
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TROUBLESHOOTING INPUT READ ERRORS 

The following are typical issues that can lead to errors when PENTRAN is reading an input 
deck across all processors: 
 
 dos2unix:  When moving between Windows and UNIX/LINUX platforms, dos2unix  or 

unix2dos commends in LINUX should be executed as appropriate.  Failure do do this can 
commonly cause input read failure and or unexplained input errors  
 
 The number of lines in any input deck, including all comments, is maxlin lines  (e.g. 

maxlin=1000).  Note:  the PENMSH-XP code will provide a recommended upper limit, and 
these will be repaired by the code if the value is exceeded.   
 
 The number of FIDO control characters in a given array field is typically set to a maximum 

of the parameter nctlim (e.g. nctlim=200).  The user should increase the number of FIDO 
characters to be read per array field as needed using the nctlim parameter. Note:  the 
PENMSH-XP code will provide a recommended upper limit, and these will be repaired by the 
code if the value is exceeded.   
 
 Exceeding column 79: Read errors may be encountered if input is specified beyond the 79 

column limit in the input deck. 
 
 Inserting spaces after the block ‘T’: On some computers, we have observed that if a block 

appears to be correct but still encounters read errors/fatal errors, the user should add one (or 
more) spaces following the ‘T’  block terminator.   
 
 Interpreted FIDO:  how the FIDO processes the input is reported in a logfile (designated 

with an ‘L#’, where the ‘#’ is a processor number) generated on one or more processors, 
depending upon the ‘loglevel’ setting indicated in the problem header.  If fatal errors are 
encountered, the cause should be identified in the logfile. (See the loglevel #  phrase/option in 
the Header card of an input deck).   
 
 Check the previous Block: Block errors encoutered in a block that seem completely correct 

may in fact be due to an improper or multiple parameter entry in the previous block or 
previous variable.   
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PROBLEM HEADER CARD, LOGLEVEL SETTINGS, AND TITLE CARDS 
 
The problem header card comes immediately after the input parameter field, is required, and 
is a maximum of 79 columns, primarily serving as a problem label.   
 
The header card includes control options for a special purpose logfile and output file control 
when a “loglevel” string is present, as described below.   
 

• Logfiles display processed FIDO input, as well as all warning and error messages, as-
read cross section data, problem decomposition information, rebalance acceleration 
matrix solution data, processor iteration progress, and a process Decomposition 
Mapping Table for all processes, cells, groups, and angles.   

 
• The Decomposition Mapping Table provides the user with an outline of where 

parallel  
• output data is located, again depending on the automatic processor assignment.   

 
• Disabling all logfiles is not recommended. A logfile can, depending on the optional 

“loglevel” string located somewhere in the header card, be generated on one or all 
processes; see the table below.   

 
At least one logfile is required for parallel data post processing using PENDATA   
 
      Summary of  loglevel string appearing in Header Card on Log/Output Files 
 
 loglevel string  Effect                                                         
 loglevel 0  Disables all logfiles. 
 No loglevel Same as loglevel 1 “Default” 
 loglevel 1  Enables logfile on processor 1 only  
 loglevel 2  Enables logfiles on all processors  
 loglevel 3  Enables logfile and prints CMR-PCR/SR factors, xsec reads on processor 1 only 
 loglevel 4  Enables logfile and prints CMR-PCR/SR factors, xsec reads on all processors 
 loglevel all  Enables logfiles, CMR-PCR/SR factors, xsec reads, and data output, all processors 
 
Additional Notes on ‘loglevel’ settings: 
 

• Iteration progress will only be provided by a processor with an active logfile during 
execution, echoed to the terminal and written to the logfile.   

 
• A loglevel 4 string forces all processors to print a log file with CMR(PCR)/SR results (if 

rebalancing is activated).   
 

• A loglevel all string is similar to loglevel 4, but also forces all processors to print an 
output file.   
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• CAUTION: The user should exercise caution with these settings when scaling to a large 
number of processors, as 3-D file outputs may be voluminous (especially with 
complete angular decomposition), possibly saturating all available disk space.   

 
• Each log file is saved using the prefix of the input filename + ’.L’ + processor#; each 

output file is saved using the input filename prefix+’.’+processor#.  For example: on 
processor 1 using input file test.pen, the logfile would be saved under test.L1, and the 
output file would be saved as test.1.   

 
• More discussion on output is made under Block 7 (print options).   

 
• On most parallel systems, processor numbers (alias task or rank numbers) are 

numbered starting from zero.  In the PENTRAN code, all processors are assumed to be 
numbered from 1 to n.  Therefore, all machine rank identifications (e.g. resulting from 
an MPI_COMM_RANK call to identify the process rank) are shifted by +1 for reporting 
purposes.  When referring to the process rank within MPI commands for actual 
message passing, reported ranks are converted back to machine ranks by adding -1). 

 
 
(10) Title Cards.  There are 10 title cards; these are REQUIRED, 1-79 columns each, which can 
be used for problem description and documentation.  If unused, these must REMAIN as the 
first 10 lines immediately following the header card.  
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  4. PENTRAN INPUT BLOCKS 

 
Below the parameter list, there are a total of seven required input blocks in a PENTRAN input 
deck.   
 

• Block 1:  includes general problem input parameters; all fields are required for code 
execution, and can be defined in any order. Twelve possible parameters in this block 
include: ngeom, ngroup, isn, nmatl, ixcrs, jycrs, kzcrs, decmpv, lodbal, timcut, 
tolmgd, modadj. 

 
• Block 2:  includes problem geometry input parameters; all fields are required for code 

execution, and can be defined in any order.  Twelve possible parameters in this block 
include: xmesh, ixmed, ixfine, ymesh, jymed, jyfine, zmesh, kzmed, kzfine, 
nmattp, flxini, mathmg. 

 
• Block 3:  includes problem macroscopic material cross section parameters; all fields are 

required for code execution, and can be defined in any order. Ten possible parameters 
in this block include: lib, legord, legoxs, nxtyp, ihm, iht, his, ihng, chig, nxcmnt. 

 
• Block 4:  includes execution control options.  Fields can be defined in any order. 

Twelve possible parameters in this block include: nprtyp, nrdblk, tolin, tolout, 
maxitr, methit, methac, ncoupl, ndmeth, nzonrb, dtwmxw, nquit. 

 
• Block 5 includes source definition options.  Fields can be defined in any order.  Eleven 

possible parameters in this block include:  nsdef, nscmsh, ssnrm, sref, serg, smag, 
spacpf, omegap, scalsf, rkdef, kextrp.           

 
• Block 6 includes boundary conditions.  All input fields are required and can be defined 

in any order.  Six possible parameters in this block include:  ibback, ibfrnt, jbeast, 
jbwest, kbsout, kbnort. 

 
• Block 7 includes print controls.  All input fields are optional and can be defined in any 

order.  No specification for any print controls sets maximum printing.  Ten possible 
parameters in this block include:  nxspr, ngeopr, nsumpr, meshpr, nfdump, 
nsrcpr, nsdump, nmatpr, nadump, and njdump. 
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BLOCK 1: GENERAL PROBLEM PARAMETERS 

    Summary of Block 1 Inputs 
 
Variable  Decription Syntax Example                                 
ngeom Geometry identifier ngeom=3d 
ngroup      Energy groups in calc/window/above restart ngroup=Grps, Window_Grps, Restart_Grps 
isn Order of 3-D quadrature isn=Sn_order, #Dirs_OS, OS_indices, OS_Segments 
nmatl Number of materials in problem nmatl=Number_of_Materials 
ixcrs Number of Coarse x mesh zones ixcrs=Number_of_CoarseX 
jycrs          Number of Coarse y mesh zones jycrs=Number_of_CoarseY 
kzcrs Number of Coarse z mesh zones kzcrs=Number_of_CoarseZ 
decmpv     Decomposition vector decmpv=Angular_weight,          
lodbal        Automatic load balancing lodbal=0 (off) or =1 (on)  
timcut       Wall-Clock time cutoff limit, minutes  timcut=Wall-clock_minutes  
tolmgd      Multigrid tolerance variable tolmgd=value  
modadj     Adjoint transport mode modadj=0 (forward) or =1 (adjoint)  

 
    Termination of the Block with a  T  is required 
 
 The ngeom variable, at present, must always be =3d.   

 The isn variable is a vector.  The first number is the Sn order, where if isn(1)>0, theis uses 
level symmetric, and isn(1)<0, this uses Pn-Tn.  The remaining elements of the vector isn are 
directly related to omega splitting, which splits an ordinate into multiple directions 
surrounding the original ordinate with a redistribution of the individual ordinate weight; this 
is used to mitigate ray effects.  The second number (isn(2)) is the number of directions 
desired for “Omega Splitting” (OS), followed next by the specific ordinate numbers 
(referenced from the (+,+,+) octant, based on the number of total ordinates in each octant) 
selected for splitting.  Final entries are the segment orders corresponding to each OS 
ordinate, respectively.  The segment order…. 

 Example:  isn=-8, 2, 2 3, 2 3  is interpreted by PENTRAN in order of appearance as  

 -8  indicates S8 (<0) Pn-Tn based quadratures (80 directions) 

 2 indicates 2 directions are intended for ordinate splitting 

 2 3  indicates ordinate numbers 2 and 3 will be split 

 2 3 indicated that the ordinates will be subdivided with segmentation levels 
2 and 3, respectively 

This results in a total of 42 directions per octant, where of the normal 10 directions per octant 
for S8, ordinate #2 is split into 9 equal-weight ordinates (2 segments), and ordinate #3 is split 
into 25 equal weight segments as follows in Fig 3.4.1: 
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                     Fig 3.4.1:  Example for isn card with ordinate splitting outlined in detail. 

S8 3D Pn-Tn Weighted  Angular Quadrature 
 Number of Omegas per Octant  :  42 
 ABS Minimum Direction Cosine :  .130158469080925 
 
        (+,+,+) Direction Cosines(in sampling order): 
 
 Omega     w (weight)      mu (x-axis)     eta (y-axis)      xi (z-axis)   
 ----- ---------------- ---------------- ---------------- ----------------  
    1  0.012653566896915 .197285875678062 .197285875678062 .960289835929871 
    2  0.001544312806800 .506257951259613 .153571680188179 .848598062992096 
    3  0.001544312806800 .488767504692078 .202454149723053 .848598062992096 
    4 …   
  … 9  0.001544312806800 .623374402523041 .258210152387619 .738059580326080 
   10  0.001544312806800 .595063686370850 .318068206310272 .738059580326080 
   11  0.000555952603463 .251446872949600 .435518771409988 .864348232746124 
   12  0.000555952603463 .222424209117889 .451031684875488 .864348232746124 
   13 …  
  …33  0.000555952603463 .266709595918655 .643893957138062 .717123806476593 
   34  0.000555952603463 .224025875329971 .659958958625793 .717123806476593 
   35  0.000555952603463 .180382817983627 .673197925090790 .717123806476593 
   36  0.013071110472083 .821784138679504 .220196396112442 .525532424449921 
   37  0.013071110472083 .601587772369385 .601587772369385 .525532424449921 
   38  0.013071110472083 .220196425914764 .821784138679504 .525532424449921 
   39  0.011333867907524 .964143216609955 .191780015826225 .183434635400772 
   40  0.011333867907524 .817361176013947 .546143293380737 .183434635400772 
   41  0.011333867907524 .546143233776093 .817361235618591 .183434635400772 
   42  0.011333867907524 .191779926419258 .964143276214600 .183434635400772 
   
              Omega Sampling Order: Sn Angles 
   
             S8               xi 
         (+ + +) Octant       1 
         m-Level Diagram    2   3 
           (Sweep 2)      4   5   6 
                        7   8   9  10 
                      mu            eta 
   
   
              Omega Splitting Segments:  
   
                       x--x--x 
             9:1       |  |  | 
         Equal weight  x- 2--x  Ordinate:  2,  2 Segment(s)  
          Splitting    |  |  | 
                       x--x--x 
       
                       x--x--x--x--x 
                       |  |  |  |  | 
                       x--x--x--x--x 
            25:1       |  |  |  |  | 
         Equal weight  x--x- 3--x--x   Ordinate:  3,  3 Segment(s)  
          Splitting    |  |  |  |  | 
                       x--x--x--x--x 
                       |  |  |  |  | 
                       x--x--x--x--x 
       
   
        GENERAL OCTANT Sweeping Assignments 
 
   Sweep   mu   eta   xi   Start  Sweep   mu   eta   xi   Start 
   ----- ----- ----- ----- -----  ----- ----- ----- ----- ----- 
     1     -     -     -    FWN     2     +     +     +    BES  
     3     -     -     +    FWS     4     +     +     -    BEN  
     5     +     -     -    BWN     6     -     +     +    FES  
     7     +     -     +    BWS     8     -     +     -    FEN  
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 The maximum allowed level symmetric quadrature is S20 (isn=20).  Higher order 
quadratures using Pn-Tn (Legendre-Chebychev) are permitted from S2  to arbitrary order 
(provided there is adequate memory).  To select Pn-Tn quadratures, use an Sn order < 0; for 
example, S20 Pn-Tn is accessed using (isn=-20).   Note: the maxqdm parameter must be set to 
isn*(isn+2)/8 with no OS.     

 Arbitrary Quadrature Set.  If the file “quadset.pen” exists in the local problem 
execution directory, then the quadrature set contained in this file will be read to replace 
any quadrature specified for the isn order indicated.  Note that for the isn order 
specified for the problem, one must match the number of entries in the first octant (+,+,+) in 
the file.  A warning message will be generated by the code in the logfile if this occurs: 
“WARNING: File quadset.pen detected: Over-riding (+,+,+) quadrature set.”  The user should 
take care to eliminate the “quadset.pen” file unless specifically intending to use it as a 
quadrature set.  If more ordinates are required, the isn value should be increased until 
enough ordinates can be represented, entering zeros for those ordinates with no weight in the 
calculation. 

 Example: set isn=8.  This requires maxqdm=10.  Therefore, ten ordinates 
representing the (+,+,+) octant should be entered. 

 Then the free field format of the file “quadset.pen” for the example is as follows: 
ordinate number, normalized weight (wm), mμ , mη , mξ , as shown below.  Note there is 
no header or comment line: 

    1  0.012653566896915 .197285875678062 .197285875678062 .960289835929871 
    2  0.001544312806800 .506257951259613 .153571680188179 .848598062992096 
    3  0.001544312806800 .488767504692078 .202454149723053 .848598062992096 
    4  0.001544312806800 .466569960117340 .249386876821518 .848598062992096 
    5  0.001544312806800 .578393042087555 .175453618168831 .796666502952576 
    6  0.001544312806800 .558410465717316 .231301203370094 .796666502952576 
    7  0.001544312806800 .533050060272217 .284921228885651 .796666502952576 
    8  0.001544312806800 .645681738853455 .195865422487259 .738059580326080 
    9  0.001544312806800 .623374402523041 .258210152387619 .738059580326080 
   10  0.001544312806800 .595063686370850 .318068206310272 .738059580326080 

         Fig 3.4.2  Contents of a sample file “quadset.pen” for isn=8 

 

 The ixcrs, jycrs, kzcrs variables are the number of coarse mesh cells projected along the x, 
y, and z axes, respectively, which yield (ixcrs*jycrs*kzcrs) total number of coarse mesh cells.  

 The decmpv “decomposition vector” allows the user to specify the priority at which 
problem decomposition occurs for each variable, optimizing decomposition (within the 
restrictions of the assigned weights) during parallel execution.  The input is an ordered triple 
of weight factors. 

 The following special rules apply to decmpv weight factors: 

 decmpv rule i.  A negative value over-rides any optimization and assigns the absolute 
value of the negative weight as the number of processes for decomposition in that variable;  if 
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this number exceeds the number of available processors, scaling is as detailed in (decmpv rule 
iii) below.  

 decmpv rule ii.  A zero value blocks any parallel decomposition scaling for that variable. 

 decmpv rule iii.  A positive value scales normally based on the decmpv weighting vector.  
See the procedure described below.  If no clear variable has decomposition priority, then 
the priority follows angular, group, and then space. 

 

 In effect, decmpv defines the user desired aspect ratio of the 3-D processor array for 
the problem.  During execution, these weights are then compared with the actual 
number of SN directions (angles), energy groups, coarse mesh cells required, and 
number of parallel processors executing. 

   

 Decomposition procedure using decmpv:  

 Consider a 3-D virtual rectangular parallelepiped processor array, of 
dimensions A*G*S.   

 A processors are devoted to angular decomposition, G processors are devoted 
to group decomposition, and S processors are devoted to spatial (coarse mesh 
level only) decomposition, with a total number of processors totalling (A*G*S).   

 The decmpv vector allows one to prioritize which variable is decomposed 
first, second, and third with then systematically performed by PENTRAN based 
on the weighting system imposed by the user with decmpv.   

 It is usually best to lock in a set number of processors for one variable, and 
then let PENTRAN scale the other variables.  For example, if a problem has 80 
directions (isn=8), 2 energy groups, and 4 coarse meshes, one decmpv strategy 
could be decmpv=-2 1 0.5.   

 Calling for 8 processors at execution, 2 processors would be locked in for 
angular decomposition, followed by maximizing group decomposition to 2 
processors, followed by maximizing spatial decomposition with the remaining 
pool of processors.   

 Note that in this case, the decomposition priority is allocated to energy 
groups, since it carries the largest (most positive) weighting factor.  PENTRAN 
will attempt to autoscale to an assigned number of processors (as in the above 
example) to a problem that is consistent with a user’s specified weighting 
vector.   

 Also a consideration in assigning decmpv weights is that PENTRAN always breaks 
the angles up into sweep octants, with a subsequent number of directions omega per 
octant.  This will affect the way angular decomposition is applied for a given number of 
processors, as there are two levels of decomposition that follow processor assignments 
in angular decomposition: there are always 8 octants, and (isn*(isn+2)/8) directions Ω̂  
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per octant.  Therefore, octants should be decomposed using an evenly numbered 
processor assignment (see the next paragraph).   

 The decmpv weights must be chosen carefully by the user, as setting a 
decomposition vector component too high will block possible scaling of useful 
processor work to another decomposition variable.  If the processor utilization in 
each decomposition is less than 100%, execution halts.  An integer number of 
processes must evenly divide so that integer portions can be evenly distributed 
on allocated processors at execution time.  This is imposed due to the 
possibility of MPI communication synchronization failures among specific 
processors that are assigned odd numbers of angles, groups, or coarse mesh 
cells. 

 ngroup is actually a 3-element vector variable which fundamentally declares the group 
structure of the calculation.  The first field is total number of energy groups required in the 
current calculation.  The second and third fields are both optional, and only used for 
downscatter fixed source problems.  Criticality computations or fixed source calculations with 
upscatter cannot take advantage of the group window or restart.   

 ngroup(1) indicates the total number of energy groups required in the current 
calculation. 

 ngroup(2) indicates the group width (span) of the group window.  The group 
window is a minimum of one (1) group wide.  A window of one group therefore uses 
only a single memory location through which to cycle all energy groups, rather than 
saving angular fluxes in each locally computed group.  Group parallel can be 
performed on the span of the group window, if desired. 

 ngroup(3) indicates the total number of restart groups converged from a previous 
run; note that this requires binary flux moment files to be available--see Restart notes 
below). If positions (2) and (3) are not set, then position (2) is set to the number of 
groups in ngroup(1), and position (3) is set to zero. 

 

 A wall-clock time cutoff via the timcut variable insures a “safe” problem stop and data 
dump after the specified wall clock time is exceeded (in minutes).  If timcut=0, no cutoff time 
is activated.   The timcut option gaurantees that the user will have final results if the 
execution time is limited for any reason.  Execution is halted after all processors signal a “wall 
time exceeded” synchronization, only after an iteration is complete, whereupon data is 
dumped.  Note that since no intermediate data dumps are performed to maximize parallel 
efficiency, this feature provides a “safety net” if wall clock times are limited in a batch queue 
structure.  This is also another means of job control, in addition to solution tolerances and 
maximum iterations (Block 4).  

 Example:  timcut=40   will force the code to cease computations, dump output files, 
and halt gracefully, provided there is enough time allocated to the queue.  
Recommendation:  set timcut to cease execution 10 minutes before queue time limit (if 
running on a timed job queue). 
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• Load balancing is handled by the code automatically if selected by the user.  (The 
automatic load balancing option is selectable via the lodbal=1 switch in Block 1).  For 
example, if a coarse mesh contains significantly more medium/fine meshes relative to other 
coarse meshes, a sequential coarse mesh assignment may lead to an imbalanced processor 
workload; one processor effectively drags down the rest while it finishes calculations, and 
others sit idle waiting for message completion.  With load balancing, the workload for each 
coarse mesh is evaluated and ranked, and cells with the densest medium/fine meshing and/or 
highest within group scattering ratio are paired with cells having the sparsest meshing and/or 
lowest scattering ratio.  Coarse mesh cells and/or energy groups are then reracked according 
the workload in each, thus attempting to force each processor to carry the same 
computational load.  While this spreads work (more) evenly, there are drawbacks: 

 1.  An important disadvantage of automatic load balancing is that it may limit the 
effectiveness of the automatic red-black coloring feature (Block 4), as it is possible only “red” 
cells are assigned to a processor based on the computational load.   

 2.  The rerack of cells may also inhibit problem convergence with regard to angular flux 
sweep progression. 

 
 The tolmgd variable defines the grid structure to be used in solving the transport 

problem.  tolmgd<0  indicates the fine grid only is used in the iteration sequence.  
tolmgd=0  indicates the medium grid only is used in the iteration sequence.  Note that the 
mathmg array sets how materials on the medium grid are used, either using a “closest 
approach” or homogenized by volume assignment (see Block 2).  tolmgd>0  indicates a 
simplified multigrid sequence is used, where a solution is converged on the medium mesh 
grid to a relative local tolerance equal to tolmgd, whereupon the values are projected to the 
fine grid (where medium grid values are overwritten with projected fine grid values to 
conserve memory).   

 Because converged medium grid values are projected and overwritten, there is no return to 
the medium grid –hence, the “simplified” or “slash” multigrid algorithm.  The user is free to 
determine the tolerance for tolmgd and all grid structures.  However, if  too small a tolerance 
is chosen, the time spent converging to the less accurate medium mesh may outweigh the 
benefit of using two grids.  If the tolmgd tolerance is set too loosely, the maximum benefit of 
using the multigrid acceleration will not be realized to provide an effective pre-conditioning 
of the fine grid values.  Experience has shown that tolmgd should fall somewhere between 20 
and 200 times the fine grid tolerance, but should also be no greater than the truncation error 
of the medium grid. 

 Since coarser grids require more iterations to converge (in spite of being fewer in number), 
the difference between grids should not vary significantly from a factor of two in any one 
direction.  If the problem is a criticality problem, the outer iteration tolerance used for the 
medium grid is implicitly determined from (tolmgd/tolin*tolout), but is also restricted from 
being any greater than tolmgd.  Note that no differencing is based on the coarse mesh grids. 
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 Based on testing already performed, multigrid performance is enhanced when the 
Hiromoto-Wienke source iteration scheme (methit=2) is selected, especially in the case of 
criticality problems.  See Block 4. 

 To solve adjoint transport problems, the procedure has been somewhat automated in 
PENTRAN.  By setting modadj=1, forward cross sections are reversed internally, with full 
automatic transposition of the scattering matrix, with gf  νσ  and gχ  also transposed 
internally.  However, the user must recognize that: 
 1.  Group G  is reported as Group 1 
 2.  Group  1  is reported as Group G (groups are reported in reverse order) 
 3.  Directions Ω̂  are implicitly Ω− ˆ  
 4.  A Group G Adjoint Source is input/reported as a Group 1 Source 
 5.  A Group 1 Adjoint Source is input/reported as a Group G source 

 
 A warning message is printed in each output file describing the effect of the adjoint 

calculation on the output data.  Essentially, as long as the user has properly defined the 
source, the adjoint calculation proceeds automatically;  the user must take heed of the 
warning message in analyzing the adjoint function output. 
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BLOCK 2: GEOMETRY 

Summary of Block 2 Inputs 
 
Variable  Decription Syntax Example                                 
xmesh coarse x mesh bdys xmesh=Coarse_xBdy_1,    
ixmed       medium x mesh intervals in coarse mesh ixmed=medium_x_in_Coarse_Cell_1.. 
ixfine fine x mesh intervals in coarse mesh ixfine=fine_x_in_Coarse_Cell_1, ... 
ymesh coarse y mesh bdys ymesh=Coarse_yBdy_1, 
jymed medium y mesh intervals in coarse ymesh jymed=medium_y_in_Coarse_Cell_1.. 
jyfine        fine y mesh intervals in coarse mesh jyfine=fine_y_in_Coarse_Cell_1, ... 
zmesh  coarse z mesh bdys zmesh=Coarse_zBdy_1, 
kzmed       medium z mesh intervals in coarse mesh kzmed=medium_z_in_Coarse_Cell_1.. 
kzfine        fine z mesh intervals in coarse mesh kzfine=fine_z_in_Coarse_Cell_1... 
nmattp      nmattp card for each coarse mesh nmattp=coarse mesh #, material#_in_fine-mesh_1.. 
flxini         initial scalar flux in each coarse mesh  flxini=initial_flux_in_Coarse_Cell_1.. 
mathmg    sets material/homogenization for med grid mathmg=Setting_in_Coarse_Cell_1.. 

  0: use closest matl;  1: use homog matl 
      

Termination of the Block with a  T  is required 
 
 All three dimensional cells are numbered sequentially according to a (z(y(x))) 

integral loop count, where coarse cells are numbered by proceeding along all x, incrementing 
y, proceeding until the limit of x and y cells are reached, then incrementing z, and so on.   

 This numbering scheme is also used throughout the hierarchy of cells, where 
medium and fine cells within each coarse 
mesh follow this mapping scheme.  For 
example, consider that ixcrs=3, jycrs=2, kzcrs=2, 
or 12 total cells.  Coarse cell numbers progress 
along x, then y, then z from 1 to 12, as shown in 
Fig 3.3.   

 Benefits of the sequential numbering 
scheme, used for all grid hierarchies (coarse, 
medium, and fine grids) are: (1) it allows for a 
more compact, sequential dimensioning of 
spatial arrays, reducing the span of arrays in 
memory; (2) looping through spatial variables 
uses a one dimensional index; and (3) 
surrounding cells are easily identified using 
forward and reverse translation mapping 
functions, enabling efficient problem setup.   

 Medium (fine) mesh intervals along each 

Cell Numbering Progression (z(y(x)))
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axis (e.g. x, y, and z in ixmed, jymed, kzmed, ... respectively) must be assigned for each 
coarse mesh number, in order, using the prescribed mesh numbering scheme.  Again, Taylor 
Projection Mesh Coupling (TPMC) is used to couple transport sweeps across cell surface 
interfaces where medium (fine) meshes may be discontinuous. 

 An nmattp card must be present for each coarse mesh number.  The first entry in each 
nmattp card is the coarse mesh cell number, followed by the material number assigned for 
each fine mesh contained in the coarse mesh cell using the order of the standard sequential 
mesh numbering scheme (proceeding along all x, incrementing y, ...).  The material number 
must directly correspond to the rank order of the material in the cross section input deck.  
Material numbers must not exceed the number of materials (nmatl) defined in Block 1. 

 The flxini array, if non-zero for each coarse mesh, is energy group-weighted by chig (in 
Block 3), where chig is the fission spectrum group probability distribution variable.  The 
flxini values are weighted by chig even if there is no fission present.  Note: fission is only 
computed if the problem type (nprtyp in Block 4) is set for a criticality eigenvalue problem.  
If a problem is solely a fixed source problem, any fission cross sections read in. 

 The mathmg array sets up how materials are treated on the medium grid, and requires a 
value for each coarse mesh number, assigned according to the sequential numbering scheme.  
If set to zero for a coarse mesh cell, this indicates that the material defined on the medium 
grid shall use the “closest approaching material” defined on the fine grid as a medium grid 
material specification.  If set to unity, the cross sections on the medium grid are homogenized 
by volume based on the fine grid material specification for that coarse mesh cell.  If material 
boundaries can be approximately resolved, the closest approaching material setting may 
perform best. 

 A geometry file is always generated (unless deactivated in Block 7) as fileprefix+‘.geo’.  This 
file contains a MathematicaTM graphics command deck to automatically render a full color, 3-
D geometry image of the problem.  This is useful for viewing/verifying problem geometries.  
Read the filename.geo file into MathematicaTM directly as a text file, or cut and paste portions 
of it from a text editor.  Using MathematicaTM, coarse meshes can be made invisible for 
viewing other coarse meshes buried within the problem structure.  See the cover of this 
manual for examples.  MathematicaTM is available from Wolfram Research, Inc for Unix-x 
stations, PC-Windows, and Mac operating systems.  A very powerful workstation may be 
required to render a suitable 3-D image for very large problems. 

 Translations between sequential cell numbers and ixcrs, jycrs, and kzcrs coordinate 
position are made by calling the CELMAP and CIVMAP routines in PENTRAN. 
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BLOCK 3: CROSS SECTION PARAMETERS 

Summary of Block 3 Inputs 
 
Variable  Decription Syntax Example                                 
lib cross section library location lib=cards (input card images from input deck) 
legord       Legendre scattering order  legord=Scattering_order   (0,1,3,5, etc, < legoxs) 
legoxs       Legendre scattering order  legoxs=Cross section scattering_order   (0,1,3,5, etc) 
            of cross sections to be read 
nxtyp cross section type (See Notes) nxtyp=xsec_type  (0,1,2,3,4,5,6,7, or 8) 
ihm number of rows of xsec data ihm=position_of_last_row 
iht total xsec row position iht=total_xsec_row_position 
ihs            within group scatter xsec ihs=g->g_xsec_row_position 
ihng position of last neutron scatter xsec  ihng=last_neutron_xsec_row_position 
           prior to coupled gamma xsecs 
chig  group fission probabilities for each  chig= mat1_Grp1_prob, mat1_Grp2_prob, ...   

     material (1,2,...), by (group...) 
nxcmnt      number of cross section comment  cards nxcmnt=number_of_79_col_cardsin xsec entries 

 
Termination of the Block with a  T  is required 

 
 
• The library input lib can be from a datafile or on card images in the input deck. 
 
• Cross sections read directly from the input deck should immediately follow Block 3, and 
must be terminated with a Block “T” terminator on the same line as, and immediately 
following the last cross section entry.   
 
• Zero fields should be used to “pad” null values in the scattering matrix, as applicable. 
 
• All filenames assume a path with an 8 character filename prefix, followed by a 3 character 
(maximum) filename suffix (‘.xxx’). 
 
• The Legendre order legord must be no greater than isn-1 (from Block 1) to properly 
integrate Legendre expansions using level-symmetric quadratures.   
 
• The Legendre scattering order of the cross sections legoxs can equal or exceed the the isn 
value, as long as the scattering order called for in computations is less than isn.   
 
• Both legord and legoxs must be zero or odd (to be able to represent peaked scattering 
situations with odd moment expansions).  Violating these rules results in an execution halt. 
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• The cross section type parameter nxtyp allows for 9 different cross section formats (0-8).   
 
• The format refers to row or column input, ASCII or BINARY data types, and whether or 
not the cross sections include the (2l+1) normalization factor for Legendre moments.   
 
• The available formats are listed as follows: 
 

 0:  STANDARD (row) form:  NO, Legendre consts NOT pre-multiplied  
 1:  STANDARD (row) form: YES, Legendre consts ARE pre-multiplied  
 2:  NON-STD  (col) form:  NO, Legendre consts NOT pre-multiplied 
 3:  NON-STD  (col) form: YES, Legendre consts ARE pre-multiplied  
 4:  STANDARD (row) BINARY FILE form:  NO, Legendre consts NOT pre-multiplied  
 5:  STANDARD (row) BINARY FILE form: YES, Legendre consts ARE pre-multiplied  
 6:  NON-STD  (col) BINARY FILE form:  NO, Legendre consts NOT pre-multiplied 
 7:  NON-STD  (col) BINARY FILE form: YES, Legendre consts ARE pre-multiplied 
 8:  GIP-ORNL        BINARY FILE form: YES, Legendre consts ARE pre-multiplied 

  

• There is no difference between ASCII and BINARY file read formats in the standard row 
and non-standard column form; BINARY data is assumed to be stored in the same relative 
order as the ASCII form.  The GIP-ORNL format assumes that a binary file, generated by the 
GIP program for mixing materials, generated the cross section file.  (The GIP-ORNL format 
reads blocks of data for all materials and Legendre orders by energy group, which differs from 
the STANDARD and NON-STANDARD formats).   

 

• To be compatible with binary file formats, all cross sections are input and stored as single 
precision. 

• Examples of the above file formats for a typical 7-group set of cross sections are below.  In 
all cases, the iht, ihs, and ihm parameters are indicated, as applicable.  Since there are no 
gamma groups, ihng=0; this parameter is in place as an indicator.  Note the structure of each 
is repeated for every scattering moment.         

 
 STANDARD FORMAT (rows) With UP and DOWN Scatter: iht=3, ihs=10, ihm=16 

 ...nxcmnt comment cards (check file for compliance if lib=file:filename) ... 
 siga1 rnsigf1 sigt1 sig7->1 sig6->1 ...sig2->1 sig1->1    0       0       0... 
 siga2 rnsigf2 sigt2    0    sig7->2 ...sig3->2 sig2->2 sig1->2    0       0... 
 siga3 rnsigf3 sigt3    0       0    ...sig4->3 sig3->3 sig2->3 sig1->3    0... 
 siga4 rnsigf4 sigt4    0       0    ...sig5->4 sig4->4 sig3->4 sig2->4 sig1->4...  
 siga5 rnsigf5 sigt5    0       0    ...sig6->5 sig5->5 sig4->5 sig3->5 sig2->5...  
 siga6 rnsigf6 sigt6    0       0    ...sig7->6 sig6->6 sig5->6 sig4->6 sig3->6...  
 siga7 rnsigf7 sigt7    0       0    ...   0    sig7->7 sig6->7 sig5->7 sig4->7... 
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 STANDARD FORMAT (rows) With DOWN Scatter only: iht=3, ihs=4, ihm=10 
 ...nxcmnt comment cards (check file for compliance if lib=file:filename) ... 

 siga1 rnsigf1 sigt1 sig1->1    0       0       0       0       0      0     
 siga2 rnsigf2 sigt2 sig2->2 sig1->2    0       0       0       0      0      
 siga3 rnsigf3 sigt3 sig3->3 sig2->3 sig1->3    0       0       0      0      
 siga4 rnsigf4 sigt4 sig4->4 sig3->4 sig2->4 sig1->4    0       0      0     
 siga5 rnsigf5 sigt5 sig5->5 sig4->5 sig3->5 sig2->5 sig1->5    0      0     
 siga6 rnsigf6 sigt6 sig6->6 sig5->6 sig4->6 sig3->6 sig2->6 sig1->6   0     
 siga7 rnsigf7 sigt7 sig7->7 sig6->7 sig5->7 sig4->7 sig3->7 sig2->7 sig1->7 
 
 

 NON-STANDARD FORMAT With UP and DOWN Scatter: iht=3, ihs=10, ihm=16                       

...nxcmnt comment cards (check file for compliance if lib=file:filename) ... 
 siga1   siga2   siga3   siga4   siga5   siga6   siga7   
 rnsigf1 rnsigf2 rnsigf3 rnsigf4 rnsigf5 rnsigf6 rnsigf7 
 sigt1   sigt2   sigt3   sigt4   sigt5   sigt6   sigt7      
 sig7->1    0       0       0       0       0       0     
 sig6->1 sig7->2    0       0       0       0       0     
 sig5->1 sig6->2 sig7->3    0       0       0       0     
 sig4->1 sig5->2 sig6->3 sig7->4    0       0       0     
 sig3->1 sig4->2 sig5->3 sig6->4 sig7->5    0       0    
 sig2->1 sig3->2 sig4->3 sig5->4 sig6->5 sig7->6    0   
 sig1->1 sig2->2 sig3->3 sig4->4 sig5->5 sig6->6 sig7->7    
    0    sig1->2 sig2->3 sig3->4 sig4->5 sig5->6 sig6->7 
    0       0    sig1->3 sig2->4 sig3->5 sig4->6 sig5->7 
    0       0       0    sig1->4 sig2->5 sig3->6 sig4->7 
    0       0       0       0    sig1->5 sig2->6 sig3->7 
    0       0       0       0       0    sig1->6 sig2->7 
    0       0       0       0       0       0    sig1->7    

 

 NON-STANDARD FORMAT With DOWN Scatter:   iht=3, ihs=4, ihm=10 

 ...nxcmnt comment cards (check file for compliance if lib=file:filename) ... 
 siga1   siga2   siga3   siga4   siga5   siga6   siga7   
 rnsigf1 rnsigf2 rnsigf3 rnsigf4 rnsigf5 rnsigf6 rnsigf7 
 sigt1   sigt2   sigt3   sigt4   sigt5   sigt6   sigt7  
 sig1->1 sig2->2 sig3->3 sig4->4 sig5->5 sig6->6 sig7->7 
    0    sig1->2 sig2->3 sig3->4 sig4->5 sig5->6 sig6->7 
    0       0    sig1->3 sig2->4 sig3->5 sig4->6 sig5->7 
    0       0       0    sig1->4 sig2->5 sig3->6 sig4->7 
    0       0       0       0    sig1->5 sig2->6 sig3->7 
    0       0       0       0       0    sig1->6 sig2->7 
    0       0       0       0       0       0    sig1->7  
 
 
 
 

• chig is the group fission probability for each material, and must correspond to each 
material number (in the order the materials are read in).  Therefore, chig must be input as a 
vector of length ngroup*nmatl.  Note that in the absence of fission, chig is still used as a 
weighting factor for the initial guess of scalar flux in each coarse mesh (flxini--see Block 2).  
For this reason, chig is un-normalized.  The user should insure when fission is present, group 
fission fractions sum to 1.0.  The data for chig are produced by the GMIX gross section mixer 
code. 
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• nxcmnt is the number of comment cards preceeding each Legendre order cross section 
set.  (This setting has no effect on GIP-ORNL cross section formats).  If capital letters are used 
in the cross section comment fields, the comments should be preceeded by a slash to avoid 
confusion with FIDO control characters during input processing. 

• Adjoint cross sections are autoimatically transposed internally by setting the 
modadj parameter--see Block I inputs.  By transposing the cross sections (inside PENTRAN), 
a forward code can be used to solve for the adjoint function, with proper attention to source 
definitions and fission parameters.  Formats for up- and down-scatter and down scatter only 
are provided here for completeness. 

•  

STANDARD ADJOINT TRANSPOSED FORM,UP-DOWN Scatter: iht=3,ihs=10, ihm=16  

siga7 rnsigf7 sigt7 sig7->1 sig7->2 ...sig7->6 sig7->7    0       0       0... 
siga6 rnsigf6 sigt6    0    sig6->1 ...sig6->5 sig6->6 sig6->7    0       0... 
siga5 rnsigf5 sigt5    0       0    ...sig5->4 sig5->5 sig5->6 sig5->7    0... 
siga4 rnsigf4 sigt4    0       0    ...sig4->3 sig4->4 sig4->5 sig4->6 sig4->7...  
siga3 rnsigf3 sigt3    0       0    ...sig3->2 sig3->3 sig3->4 sig3->5 sig3->6...  
siga2 rnsigf2 sigt2    0       0    ...sig2->1 sig2->2 sig2->3 sig2->4 sig2->5...  
siga1 rnsigf1 sigt1    0       0    ...   0    sig1->1 sig1->2 sig1->3 sig1->4... 
 

 STANDARD ADJOINT TRANSPOSED FORM, DOWN Scatter: iht=3,ihs=4, ihm=10  

siga7 rnsigf7 sigt7 sig7->7    0       0       0       0       0      0     
siga6 rnsigf6 sigt6 sig6->6 sig6->7    0       0       0       0      0      
siga5 rnsigf5 sigt5 sig5->5 sig5->6 sig5->7    0       0       0      0      
siga4 rnsigf4 sigt4 sig4->4 sig4->5 sig4->6 sig4->7    0       0      0     
siga3 rnsigf3 sigt3 sig3->3 sig3->4 sig3->5 sig3->6 sig3->7    0      0     
siga2 rnsigf2 sigt2 sig2->2 sig2->3 sig2->4 sig2->5 sig2->6 sig2->7   0     
siga1 rnsigf1 sigt1 sig1->1 sig1->2 sig1->3 sig1->4 sig1->5 sig1->6 sig1->7 
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BLOCK 4: CONTROL OPTIONS 

Summary of Block 4 Inputs 
 
Variable  Decription Syntax Example                                 
 

nprtyp 

 

problem type classification 

 

nprtyp=problem_type ([-maxsrc, 0, maxsrc]) 

nrdblk      automatic red-black coloring switch  nrdblk =0 (off) or =1 (on) 

tolin        inner local flux iteration tolerance tolin=tolerance OR tolin=CM1_tol, CM2_tol... 

tolout       outer criticality tolerance, med grid 
multiplier 

tolout=tolerance, med_grid_multiplier 

Maxitr max inner & outer iters/group, k-inner 
iter limit 

maxitr=max_no_of_iterations, criticality_inner_limit 

Methit source iteration method methit=method_no  

            =1 (“Multigroup”) or =2 (“Hiromoto-Wienke”) 

methac acceleration method, csda parameters methac=method_no (0,1,2,3,4,5, or 6), csda parameters 

Ncoupl Taylor Projection (TPMC) coupling 
order 

ncoupl=coupling order  (0 or 1) 

ndmeth   differencing method by coarse mesh 
no   

ndmeth= Coarse1_diffmeth, Coarse2_diffmeth, ... 

          set to 0(DD), 1(DZ), 2(DTW), 3(EDI), 4(EDW) 

nzonrb     zones, damping, skip iterations for 
methac setting 

nzonrb=number_of_zones, damping_factor, 
skip_Iterations 

dtwmxw   

 

nquit         

 

DTW parameter vector for adaptive 
differencing settings (3) 

# iters a non-converging group is 
stopped 

 

dtwmxw=maximum_DTW_weight, min_optical_thick, 
qfratio; default settings  dtwmxw=0.95, 0.02, 1.00 

nquit=number_of_iterations 

 

Termination of the Block with a  T  is required 
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nprtyp determines the type of transport problem to be solved: 
 

• nprtyp=0  indicates a criticality eigenvalue problem (no fixed sources)  
 

• nprtyp >=1 corresponds to 1 or more fixed sources, equal to the number of fixed 
sources in the problem.  There is one fixed volumetric and planar source permitted for 
each coarse mesh--see Block 5.  This input requires sdef cards, defined in Block 5. 

 
• nprtyp <=-1 is a combination of the first two options: a criticality k-eigenvalue with 

fixed sources present  
 

• the number of fixed sources is limited by the maxsrc parameter in PENTRAN  
 

tolin defines the maximum local relative flux error for convergence.   
• Note if one value is supplied, then that value is used globally for all coarse mesh cells 

 
• If a vector of values are supplied, then individual tolin values are supplied to each 

coarse mesh cell.  Note that if more than one value is entered, the number of entries 
must match the total number of coarse mesh cells.   

 
• The vector of tolin values for local convergence enables the inifinity norm to be 

relaxed in specific local regions by coarse mesh designation.    
 
tolout defines the relative tolerance on the k-effective system eigenvalue, and is only used in 
a criticality calculation.   
 

• Solution convergence progression, including intermediate k-effective values and 
relative tolerances, are stored in logfiles (see probname.K1 file, other log files, if used 
(see the loglevel indicator in the Header card).   
 

• The final system k-effective from each method (power iteration, statistical mean, and 
balance-derived) is reported in the output file.  Note these values should be fully 
consistent to within the outer convergence criterion. 

 
• Note that while a solution may be converged based on the local relative convergence 

criteria tolin, the solution must satisfy the scalar balance equation to be converged.  
The integral system balance is collected and computed on each processor during 
problem output.  If the net balance reported is not on the order of the solution 
tolerance (e.g. within an order of magnitude of the solution tolerance, sometimes a bit 
more if the problem is fully decomposed in parallel), then convergence has not been 
reached. 
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maxitr is a vector containing iteration limits.   

• The first entry is a standard inner iteration limit.   
• The second (optional) entry is an inner iteration limit for criticality problems.  A 

recommended value for criticality eigenvalue problems is 10 inner iterations 
• Note the first entry iteration limit holds for both the inner and outer loop tolerances.  

It is recommended to set the maxitr variable to be based on the inner iteration loop.  
A data dump occurs if maxitr is exceeded.  The wall clock time (timcut in Block 1) can 
be used to control execution for the outer loop, if necessary. 
 

methit refers to the algorithm for the source iteration sequence, either a 1 or a 2 
 

• the “multigroup” (methit=1) method—standard  
• the “one-level scheme” (methit=2) of Hiromoto and Wienke (1989).  Either scheme 

may be used with any phase space decomposition strategy, although multigrid 
acceleration seems to perform best with the Hiromoto-Wienke scheme (see Sjoden 
and Haghighat, 1996). 
 

methac is a vector input variable, where the first position refers to the rebalance acceleration 
method used.  At present, damped Partial Current Coarse Mesh Rebalance (CMR) and System 
Rebalance (SR) are available, based on coarse mesh cells.  Damping restricts oscillations and 
divergence in the rebalance (Rhoades, 1981).  Note that rebalance is used to scale only the 
scalar flux (as opposed to the angular fluxes), and is performed to avoid additional reductions 
if angular decomposition is used.  Options for methac are: 
 

i.  methac=0:  No Acceleration 
ii.  methac=1 : SR only (based on nzonrb coarse mesh cells-see below) 
iii.  methac=2 : PCR only (based on nzonrb coarse mesh cells-see below) 
iv.  methac=3 : Alternating PCR/SR (based on nzonrb coarse mesh cells-see below) 
v.  methac=4, 5, or 6:  Same as 1,2,3, respectively, but utilizing global synchronization. 

 
• methac=1,2, or 3 settings use processor communications for rebalancing (using group-

wise processor communicators), and can be used with any source iteration scheme.   
 

• methac=4 ,5, or 6 requires an intermediate step of global process communications 
(which can be significantly more expensive), and can only be used with methit=2.  This 
distinction between the use of communications in rebalancing methods was necessary 
due to limitations encountered on some parallel system implementations of the MPI 
standard. 

 
• PCR rebalancing is performed using a direct Cholesky-LU factorization of the group 

rebalance matrix (the rebalance matrix is stored as an augmented system in an array, 
and is replaced in memory by Cholesky-factorized lower and upper triangular 
matrices).   
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o There is a limit on the size of the augmented rebalance matrix.  Although the 
rebalance matrix is dimensioned as n x (n+1) of single precision numbers. The 
number of contiguously numbered coarse mesh cells, (e.g. a block of coarse 
meshes) that can be rebalanced at one time is limited by the maxcmr 
parameter in PENTRAN; as a result, multiple “blocks” of rebalance operations 
may be required, depending on how many coarse meshes are defined for a 
problem.   

o A direct solution (rather than an iterative one) is used for rebalance in 
PENTRAN because efficient synchronization required, especially with complete 
phase space decomposition. 
 

o The nzonrb vector permits the user to specify:  
 

 (1) how many coarse meshes should be considered in a rebalance zone 
(up to a current maximum of maxcmr), loaded into position 1;  

 (2) the damping factor to be used with partial current rebalance, where 
dampf <1 is under-damped, dampf =1 is critically damped, and dampf >1 is 
over-damped (not recommended), loaded into vector position 2 
 

 (3) the iteration period wherein rebalance is skipped, loaded into 
position 3 of the nzonrb vector.   

 
 If the execution is parallel, a check is made to determine if the locally 

assigned coarse meshes (determined by the nzonrb(1) setting) belong to 
the zone of coarse meshes undergoing rebalance; if not, rebalance is 
bypassed, saving execution time.   

 
 The user should be aware that setting nzonrb too small (covering a small 

block of coarse meshes) may cause iteration instability and divergence of 
the solution, as may using overdamping--of course, this is problem 
dependent.    

 
• Collapsed  Source Diffusion Acceleration (CSDA). Subsequent vector positions for 

methac are for CSDA (collapsed source diffusion acceleration) sources.   
 

• Note: at present, this is an unproven method by which to accelerate the 
transport solution, and is not recommended for use at this time.  This is a 
completely experimental feature where an analytical diffusion approximation is 
used in each energy group to preset flux iterates in PENTRAN based on a 
collapsed source from integration over problem geometry.   
 

• The vector positions for this are as follows, starting with methac position (2) 
entry: csda init Off=0/Point=1/Cosine=2), csda xcenter (0=auto), csda ycenter 
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(0=auto), csda zcenter (0=auto), inner iterate # for application use of csda, 
outer iterate # for application of csda.   

 
• Zero entries for “center” values force PENTRAN to determine an average source 

location based on the distribution.  “Point” refers to a collapsed point source;  
“Cosine” refers to a cosine source distribution.   

 
 
ncoupl defines the order of coupling for Taylor Projection Mesh Coupling.   
 

• Setting ncoupl=0 forces 0th order, while setting ncoupl=1 implements first order 
coupling.   
 

• A zero setting forces all coupling coefficients to be zero, thus invoking only a direct 
flux assignment/simple flow balance at each interface during a transport sweep.   

 
• Note that restricting the coupling to 0th order does not save significant computational 

work. 
 

ndmeth defines the spatial differencing method to be used 
 

• It is a vector containing the differencing method to be used in each coarse mesh cell. 
 

•  At present, setting this =0 selects DD (with no fixup, no upgrade);  =1 selects DZ (can 
be upgraded to DTW, EDI); =2 in each coarse mesh selects DTW (can be upgraded to 
EDI); =3 selects EDI, while =4 selects EDW.   

 
• An upgradeable diamond (DZ) setting will automatically use DTW differencing if a 

negative (set to zero) flux fixup is detected during any angular flux sweep.  From there, 
if a DTW maximum weight (in any direction) is greater than dtwmxw, then the DTW 
method is upgraded to EDI.  This allows EDI to take over from DTW, since high 
weights in DTW tend to occur in thicker cells with streaming, where EDI is more 
accurate.   

 
• A negative differencing number locks that method (with the exception of DD, already 

locked using a zero setting), blocking upgrade options;  for example, setting ndmeth 
to -1 in a coarse mesh cell locks DZ differencing regardless of fixup calls, blocking any 
upgrade.  For more information on differencing, refer to Chapter 2 of this document. 
 

dtwmxw is the keyword variable where the user can optionally apply a specification vector 
containing three entries in a specified order (dtwmxw, edwmno, qfratio).   

• The first position (internal code variable dtwmxw) defines the maximum accepted 
weight for DTW for adaptive differencing that, if reached, is used to trigger an upgrade 
to EDI differencing.   
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• The second position in the vector defines the minimum optical thickness (internal 
code parameter edwmno) to consider for adaptive differencing; if this minimum 
optical thickness (σ Δh) is not achieved, then the DTW scheme is used by default.   

• The third field specifies the allowed ratio of the cell angular source density to the cell 
angular collision density (internal code variable qfratio, default of 1.00); if the cell has a 
ratio less than qfratio, the cell is not dominated by a radiation source term, and is 
therefore a cell wherein radiation is streaming, and adaptive differencing is allowed.  
Otherwise, the DTW scheme is used.  Cells where strong sources are present yield a 
concave down spatial profile, and therefore are more accurately represented using the 
DTW scheme.  Hence, the qfratio setting is actually a ratio of the local angular source 
density and product of average angular flux and total cross section.  Therefore, if 
onewants adaptive differencing to be applied more often, then this value should be 
raised. 

• The Default settings for dtwmxw are:  dtwmxw=0.95, 0.02, 1.00 
                  The ranges for settings are:  dtwmxw=[0.5,1.0],N/A,[>0.0] 
This means that the linear maximum weight where DTW will be upgraded to EDI is 
0.95; the optical thickness of the cell for upgrade to EDI is 0.02; the qfratio is 1.00, so 
that an effective angular source to product of angular flux ratio and total cross section 
must be less than 1.00 to enable an upgrade to EDI.    

  
nrdblk=1 can be set to engage automatic red-black coloring based on problem coarse meshes, 
used only to accelerate parallel spatial decomposition.   
 

• Coarse meshes are re-ordered in a “stacked checkerboard” sequence to use the most 
recent iteration angular fluxes as soon as they are available, to the greatest extent 
possible. Note that use of this setting when not performing parallel spatial 
decomposition can (in some cases) hinder convergence, and should be avoided.   
 

• A warning message is issed if nrdblk is engaged without spatial decomposition.  Also 
note that the effectiveness of red-black coloring may be limited by automatic load 
balancing, especially if only “red” (or “black”) cells are allocated to one processor due 
to load reracking (see Block 1). 
 

nquit sets the maximum number of iterations permitted to stop a non-converging group 
when that group fails to converge based on a specific location (coarse and medium or fine 
mesh number) in the problem.   
 

• The defailt value is nquit=4 if no value is specified.  After failure, the group is set as 
“converged” with warnings.  
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BLOCK 5: SOURCE DEFINITION AND OPTIONS 

    Summary of Block 5 Inputs 
 
 
Variable        Decription            Syntax Example                                 

 
  

nsdef  Source type of each source   nsdef=source1_type , source2_type, ...        
                     (0=volumetric, 1=planar source) 
nscmsh     Coarse mesh number of each source              nscmsh=coarse_mesh#_source1,  ... 
ssnrm ** Surface Source normal vector ssnrm=u1,v1,w1,u2,v2,w2, ... 

sref 
Arbitrary reference coordinate for each 
source  sref=x1,y1,z1,x2,y2,z2, ... 

serg Source energy distribution with respect to  serg=g1_prob_source1, g2_prob_source1, ... 
    energy groups (1...ngroup), each source    smag=source1_magnitude, source2_magnitude ...  

smag  Source integral magnitude, each source spacpf=src#, grp#, #cells, cell1_prob, cell2_prob ... 
spacpf  * Source fine mesh spatial dist, specified  omegap=src#, grp#, octant#,  

omegap * Source angular dist, specified by octant no 
 
       1_prob,…        n_prob. 

scalsf  *  Source fine mesh scale factor, specified scalsf=src#, grp#, scale_factor ... 
rkdef Criticality eigenvalue estimate for system rkdef= keff_estimate 
kextrp * Aitken extrapolation switch for keff kextrp= 0 (none)/1 (extrapolate, default) 

 
            *Optional 
           **Required for each source if nsdef=1 detected 
 
                 Termination of the Block with a  T  is required 
 
 
In the event of a criticality problem with no fixed sources, only the rkdef card is required.   
 
rkdef is the user-supplied initial guess for the integral system k eff (criticality eigenvalue).  In 
the event of a fixed source problem with no fission, the rkdef card is not required. 
 
Regarding kextrp, if a criticality problem, the Aitken extrapolation discussed in Section 2.10 
can be disabled by setting kextrp=0.  Otherwise, the code defaults to using extrapolation of 
the eigenvalue to help accelerate convergence.   
 
All sources are defined as isotropic with equal probability in each fine spatial mesh unless 
modified by omegap and/or spacpf.  To be considered “active,” these probability 
distributions must assign values to have an integral probability magnitude >1.E-15.   
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The medium mesh source is automatically constructed using a “nearest neighbor” approach 
from the fine grid source definition.  If the medium grid density is too sparse to resolve a 
source distribution based on the fine grid, a warning message is issued. 
nsdef defines either a volumetric source (#/cm3/s) or a planar (#/cm2/s) source.  One of each 
is possible in each coarse mesh cell.  The number of entries in nsdef must equal the absolute 
value of nprtyp (see Block 4). 
 
nscmsh is a vector providing the reference location of sources (in order of source number) by 
coarse mesh number.  The number of entries in nscmsh must equal the absolute value of 
nprtyp (see Block 4). 
 
sref permits an arbitrary reference coordinate to be specified for each source, in order of 
source number.  The number of entries in nsref must equal the absolute value of nprtyp*3 
(see Block 4). 
 
serg is a vector containing the energy group probability distribution for each source, in order 
of source number.  The number of entries in serg must equal the absolute value of 
nprtyp*ngroup (see Blocks 1, 4). 
 
smag defines the integral source magnitude (over all variables), in order of source number.  
The number of entries in smag must equal the absolute value of nprtyp (see Block 4).  
Negative smag entries activate source normalization for the source number. 
 
ssnrm is only required if there are nsdef entries equal to 1, indicating planar sources.  In that 
case, ssnrm entries are required for all sources, although they are not used in the case where 
sources are volumetric.   
 

• The ssnrm defines a vector for each source pointing from the center of the coarse 
mesh where the source is located.  PENTRAN turns this vector into a unit vector, and 
then assigns a planar source to the surface of the 3-D coarse mesh boxoid normal to 
the largest component of that unit vector.   
 

• If the surface is on a shared interior problem boundary, a similar planar source is 
implicitly defined for the adjacent mesh cell sharing the common boundary.  Since 
only one surface source can be defined for one coarse mesh, the coarse mesh containing 
the implicitly defined planar source cannot contain any other planar source.  This 
restriction was made due to memory limitations.   

 
• Therefore, planar sources on interior surfaces cannot use discontinuous meshing 

between coarse mesh cells on the common surface where the source is located.  Note 
that a spatial distribution can also be assigned to a volumetric source(s) to simulate a 
planar source, although volumetric sources are assumed to be averaged at the cell 
center.   
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• The number of entries in ssnrm must equal the absolute value of nprtyp*3 (see Block 
4).   

 
Source particles from planar sources located at system boundaries entering into the system 
show up implicitly in boundary currents of particle balances.  Planar sources defined on 
interior surfaces will be indicated in the system balances as “source particles.”   
 
omegap is an optional variable where the user can specify an angular probability distribution 
for any coarse mesh source.   

 
• If this variable is not defined for the source number, an equal (isotropic) angular 

probability is assigned for the source.   
 

• If this variable is defined for the source number, it must be specified to indicate the 
source number, group number, angular octant number, and corresponding probability 
for each angle in the octant only for the sources that require a non-uniform  angular 
probability distribution.  

 
•  If the group number is entered as a negative group number, the angular probability 

function is systematically applied to all energy groups.  Each angular probability 
distribution is un-normalized.   

 
• Probabilities for the total number of angles in any specified octant are required, and it 

is the user’s responsibility to supply the correct number.  Probabilities for octants not 
defined are implicitly assumed to be zero.   

 
• A numbering pattern to guide probability assignment for sweep octants (and angles in 

each sweep octant) is provided in the Appendix; a complete quadrature set can be 
found in output files as a reference. 

 
spacpf is an optional variable where the user can specify a fine mesh spatial distribution to a 
any coarse mesh source.   

 
• If this variable is not defined for the source number, an equal spatial probability is 

assigned for the source.   
 

• If this variable is defined for the source number, it must be specified to indicate the 
source number, group number, number of sequentially numbered meshes, and 
corresponding mesh spatial probabilities only for the sources that require a non-
uniform spatial probability distribution.  
 

• If the group number is entered as a negative group number in spacpf, the spatial 
probability function is systematically applied to all energy groups.   
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• If a scalsf is declared, then this is used for all groups as well (see below).   
 

• Probabilities for cells not defined are assumed to be zero.  Note that if an un-normalized 
distribution is specified (the default), a warning message is reported. 

 
For a planar boundary source, each spacpf probability is still referenced by fine sequential 
cell number--although probabilities in cells not on the coarse mesh boundary technically 
have no effect on the boundary cell source probabilities.  For clarity, the user should still 
include zeros for cell location probabilities not on the boundary surface.  Again, the 
sequential numbering scheme described in Block 2 for coarse meshes also applies to fine (and 
medium) meshes contained within each coarse mesh.  (Note that cell probabilities are 
automatically transferred to the implicitly defined planar source for the adjacent coarse mesh 
on the common boundary--this is why discontinuous meshing on the boundary surface 
containing the source is not permitted). 
 
scalsf is an optional scale factor available for applying a scalar multiplier to any spatial 
probability distribution.  To be “active,” the magnitude of the scale factor must be greater 
than 1.E-50.  The source number, group number, and positive scale factor, in order, are 
required for each applicable source.  Note:  if the spacpf distribution applied to all groups (so 
that the group number is entered as a negative number), then the scale factors defined in 
scalsf only need to be entered for group 1, and will be automatically apllied throughout all 
groups.    
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BLOCK 6: BOUNDARY CONDITIONS 

Summary of Block 6 Inputs 
 
Variable  Decription                      Syntax Example                                 

 
ibback        Global “back” (-x) surface boundary condition  ibback=type, group1_albedo, group2_albedo,... 
ibfrnt        Global “front” (+x) surface boundary condition  ibfrnt=type, group1_albedo, group2_albedo,... 
jbeast         Global “east” (-y) surface boundary condition                jbeast=type, group1_albedo, 
group2_albedo,... 
jbwest        Global “west” (+y) surface boundary condition  jbwest=type, group1_albedo, group2_albedo,... 
kbsout         Global “south” (-z) surface boundary condition  kbsout=type, group1_albedo, group2_albedo,... 
kbnort        Global “north” (+z) surface boundary condition  kbnort=type, group1_albedo, group2_albedo,... 
 
              Termination of the Block with a  T  is required 
 
Note the name of each boundary condition begins with the axis normal to each surface.  
Global boundary condition names correspond to global system boundaries with a right 
handed 3-D Cartesian coordinate system: 
 

• “back” (-x) 
• “front” (+x) 
• “east” (-y) 
• “west” (+y) 
• “south” (-z) 
• “north” (+z) 

 
Boundary types (illustrated with ibback, but can apply to any of the boundary variables): 
 

• ibback=0  is a vacuum boundary.  No albedo factors are required. 
 

• ibback=1, ...  is an albedo boundary--ngroup albedo factors are required immediately 
following the type (the “1”). 
 

o For perfect spectrally reflective boundaries, all group albedo factors should be 
unity (1.0).   
 

o Hint:  One can often represent a complex boundary “wall” geometry with a 
small model, and with the detailed J+/J- information available on individual 
coarse meshes in the output, derive a spectrally dependent set of albedo factors 
for a larger model (Sjoden, et al, 2000). 
 

o Gray/White boundaries are not supported. Periodic boundaries are not 
supported. 
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BLOCK 7: PRINT CONTROLS 

Summary of Block 7 Inputs 
 
Variable     Decription                            Syntax Example                                 

                           
nxspr Print cross section tables in output nxspr=0 (off) or =1 (on)  
ngeopr Print a MathematicaTM readable geometry file ngeopr=0 (off) or =1 (on) 
nsumpr  Print local coarse mesh summary tables in output  nsumpr=0 (off) or =1 (on) 
meshpr Vector list of coarse mesh cells with formatted 

output  
meshpr=0 (none) or  coarse_mesh#, ... 

nfdump  Binary data dump of mesh scalar fluxes/moments  nfdump=0 (off)or =(legord_dumped+1)  
nsrcpr Print source/distribution tables in output nsrcpr=0 (off) or =1 (on), =2 (detailed) 
nsdump  Binary data dump of mesh scalar sources nsdump=0 (off) or =1 (on) 
nmatpr Print a material map in output files for local coarse 

cells 
nmatpr=0 (off) or =1 (on) 

nadump  Vector list of Binary data dump for angular fluxes nadump=coarse_mesh#, dump_type, … 
njdump  Binary data dump for flux and net fine mesh 

currents (Jnet) 
njdump=0 (off) or =1 (on) 

 
          Termination of the Block with a  T  is required 
 
Default settings are as follows:  nxspr=1, ngeopr=2, nsumpr=1, meshpr=0, nfdump=1, 
nsrcpr=1, nsdump=1, nmatpr=1, nadump=0, njdump=0.  These settings are used if the 
parameter is not listed in the input deck. 
 
ngeopr can be set to values between [0,2], and prints increasingly detailed information about 
the problem geometry.   
 

• If ngeopr=1, only coarse mesh geometry information is output;  if ngeopr=2, then 
medium/fine mesh details are printed. 
 

• If no meshpr field is specified, full formatted output, incuding six-face partial and net 
currents, are output for all coarse and medium (fine) meshes.  A negative coarse 
mesh number supresses the fine mesh flux and partial current outputs, 
yielding formatted output of coarse mesh computed scalar fluxes and currents 
only.  An example of the type of data from a negative setting for coarse mesh 53 
from the cardd   
 

• It is not recommended that medium (fine) mesh data be specified for many coarse 
meshes with meshpr, since flux moments are accessible from binary files (see 
nfdump), automatically managed using the PENDATA utility.  Still, it is helpful to 
request data from a few sample coarse meshes, since optical thickness, current 
balance, and other helpful data are printed into the output file.   
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       Fig 3.4.2:  Example of Coarse mesh based detail available (derived from the ‘cardd.3’ file, 
output from processor 3 of 8, profiled in the Appendix), useful for partial currents, etc.  Note 
that fine mesh net current data (with fluxes) can be obtained by setting the njdump variable. 
 
 

• The value of nfdump specifies the order of the angular flux moments to be dumped; 
setting this =1 indicates that only zeroth order moments (scalar fluxes) will be dumped.  
The maximum is (legord+1), which would dump all moments through order legord.   
 

• If one desires only scalar fluxes from one portion of the problem, it may be better to 
select the appropriate coarse mesh using meshpr, since nfdump yields (binary) 
moment data for the entire problem phase space.  Again, binary files are dumped by 
each processor only for the phase space computed on that processor.  Data from 
multiple processor files can be automatically gathered with the PENDATA utility. 

 
• Binary files generated by nfdump and nsdump have file input prefixes + ‘.fprocessor#’ 

and ‘.sprocessor#’, respectively.  Note that since medium (fine) mesh data are stored 
locally, the output on each processor number is dependent on coarse mesh and group 
processor assignment. 

 
• nadump permits the cell centered fine mesh angular fluxes from a particular coarse 

mesh to be dumped to binary file format (see PENDATA option 8).   
 

   
   MESH/HOMOGENIZED OPTICAL DATA  Group   1  Coarse Cell   53  Dom Matl   1 
 
  Mesh  Cells xDiv  dex(cm)  xMFPH yDiv  dey(cm)  yMFPH zDiv  dez(cm)  zMFPH 
  ----  ----- ---- -------- ------ ---- -------- ------ ---- -------- ------ 
  Crs       1   1    6.00007499.94   1    2.00002499.98   1   12.0000******* 
  Fine    160  10    0.6000 749.99   4    0.5000 624.99   4    3.00003749.97 
 
  Coarse Center = (  15.0000,   1.0000,  22.0000 )  Volume =  1.4400E+02 cm3 
  Normal Area to :   x =  2.4000E+01  y =  7.2000E+01  z =  1.2000E+01 cm2 
  Hsiga_g = 6.45916E+01  Hnsigf_g = 0.00000E+00  Hsigt_g = 6.53327E+01 1/cm 
  Hsig_g->g = 7.41082E-01 1/cm    Hchi_g = 0.00000E+00   Group Homog c=0.011 
 
       COARSE BOUNDARY DATA  Group   1  Coarse Cell   53  Dom Matl   1 
                       Final Error Norm=  8.8637E-07 
 
   Crs  Boundary     Phi|         J+|         J-|       J Net|   Phi|BdySrc 
   Bdy     cm      #/cm2/s      #/cm2/s     #/cm2/s    #/cm2/s   Avg #/cm2/s 
  ----- -------- ----------- ----------- ----------- ----------- ----------- 
  x-1/2  12.0000  6.5255E-05  1.2858E-07  1.2261E-05 -1.2132E-05  0.0000E+00 
  x+1/2  18.0000  6.5325E-05  1.2699E-05  1.2825E-07  1.2570E-05  0.0000E+00 
  y-1/2   0.0000  3.4330E-19  0.0000E+00  2.6472E-19 -2.6472E-19  0.0000E+00 
  y+1/2   2.0000  1.0960E-02  5.4601E-07  8.9992E-03 -8.9987E-03  0.0000E+00 
  z-1/2  16.0000  1.1105E-04  2.6579E-05  1.3937E-07  2.6440E-05  0.0000E+00 
  z+1/2  28.0000  4.3798E-05  2.9356E-05  7.8157E-09  2.9348E-05  0.0000E+00 
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• For nadump, each coarse mesh number listed must be followed immediately by an 
angular flux dump type, which specifies the hemisphere of angular fluxes to dump for 
each medium/fine mesh in the coarse mesh, as follows: 

 
Dump types for angular fluxes using nadump: 
 

• indicates Type 1:  - x  hemisphere,  sweep octants 1, 3, 6, 8 
• . . . . . . . .Type 2:  +x  hemisphere,  sweep octants 2, 4, 5, 7 
• . . . . . . . .Type 3:  - y  hemisphere,  sweep octants 1, 3, 5, 7 
• . . . . . . . .Type 4:  +y  hemisphere,  sweep octants 2, 4, 6, 8 
• . . . . . . . .Type 5:  - z  hemisphere,  sweep octants 1, 4, 5, 8 
• . . . . . . . .Type 6:  +z  hemisphere,  sweep octants 2, 3, 6, 7 
• . . . . . . . .Type 7: complete sphere,  sweep octants 1 through 8 

 
• Binary files generated by nadump have   file prefixes + ‘.aprocessor#’.   

 
• WARNING!  Be very careful of how much angular flux data you ask for with nadump -

- this requires a great deal of disk space!  Since angular fluxes can be dumped based on 
a coarse mesh, you may want to set up a “thin wall” coarse mesh to obtain a 
hemisphere of exiting angular fluxes to use for coupling/input for another calculation.  
Since angular data is stored in parallel, where it is only locally available to those 
processors working on their assigned portion of the phase space, you will need to 
gather angular flux data from multiple processor files—this can be automatically 
gathered with the PENDATA utility. 

 
njdump yields a set of binary files that contain flux and net current over the  fine mesh 
contained in a particular coarse mesh to be dumped to binary file format; see PENDATA 
option 9.   

 
• Binary files generated by njdump have   file prefixes + ‘.jprocessor#’.   

 
 
 



 

                                                           125                                                  Appendix 

5. APPENDIX  

LEVEL SYMMETRIC QUADRATURE SETS 

Level symmetric quadrature weights are given as point weights;  these initially sum to 1.0 for 
each octant.  Following initial assignment in PENTRAN, all weights are then multiplied by 
1/8 for normalization on the unit sphere. 

 The number of Ω’s per octant is (isn*(isn+2)/8), with (isn/2) distinct �’s, assuming isn is the 
discrete ordinates quadrature order.   

 Point weights derived from level weights for S14 and above can vary due to more than one 
positive real root possible to satisfy the criteria for level symmetry; therefore, point weights 
derived here for S14 and above may or may not differ from those found elsewhere. 

 All quadratures in PENTRAN were derived with a numerical precision of at least 1.0D-15.  A more 
detailed PENTRAN quadrature listing can be obtained using the PENQUAD utility. 

    Example: S6 Level Symmetric            PENTRAN  Ω Sampling order: 
             (μ>0, η>0, ξ>0) 
                      ξ                                       ξ 
               1                      1 
          2 2                    2 3 
          1 2 1                 4 5 6   
                 μ              η                                     μ              η             
    
        6*8/8 = 6 Ω’s per octant                     6/2 = 3 unique μ’s 
 
                 PENTRAN Assignment of S6 Ω’s: 
                       Ω #     μ=μm    η=μm      ξ=μm    w=wm  

         ____         ______      ______       ______    ______ 

                          1              1          1        3     1 
                             2        2      1        2    2 
                             3        1      2        2     2 
                             4        3      1        1     1 
                             5       2      2        1     2 
                             6       1      3        1     1   
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„ S2 Level Symmetric Quadrature         
                      

                S2              ξ    ξ 

                       (+ + +) Octant       1    1 

                       m-Level Diagram    μ     η  μ     η 

                       (Sweep 2)  

  wm(1)=1.D0              
        μm(1)=0.5773502691896257D0       

 

„ S4 Level Symmetric Quadrature       
                         

    S4              ξ           ξ              

                       (+ + +) Octant       1     1 

                       m-Level Diagram     1 1    2 3 

                       (Sweep 2)          μ       η    μ       η 

 

 wm(1)=0.3333333333333333D0                
   
      μm(1)=0.3500211745815406D0                   
 μm(2)=0.8688903007222013D0 
 

„ S6 Level Symmetric Quadrature       
                     

       S6                ξ  ξ 

                    (+ + +) Octant          1    1 

                    m-Level Diagram        2 2       2 3 

                    (Sweep 2)             1 2 1     4 5 6 

                                         μ         η     μ         η 

 wm(1)=0.1761261308633819D0        wm(2)=0.1572072024699513D0  

         μm(1)=0.2666354015167032D0           μm(2)=0.6815077265365472D0 
        μm(3)=0.9261809355174899D0 
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„ S8 Level Symmetric Quadrature       
               

       S8                       ξ    ξ 

                (+ + +) Octant              1    1 

                m-Level Diagram           2   2       2   3 

                (Sweep 2)               2   3   2           4   5   6 

                                      1   2   2   1    7   8   9  10 

                                    μ                         η              μ                        η 
 
  wm(1)=0.1209876543209866D0              wm(2)=0.0907407407407413D0 
        wm(3)=0.0925925925925926D0 
           
        μm(1)=0.2182178902359909D0               μm(2)=0.5773502691896258D0 
        μm(3)=0.7867957924694435D0               μm(4)=0.9511897312113425D0 
 

„ S10 Level Symmetric Quadrature       
         

         S10                   ξ            ξ 

            (+ + +) Octant           1            1 

            m-Level Diagram        2   2              2   3 

            (Sweep 2)            3   4   3          4   5   6 

                               2   4   4   2            7   8   9  10 

                             1   2   3   2   1        11  12  13  14  15 

                           μ                                  η      μ                                     η  

 wm(1)=0.08930314798435302D0       wm(2)=0.07252915171236890D0 

     wm(3)=0.04504376743640288D0                 
  wm(4)=0.05392811448783971D0  
 
  μm(1)=0.1893213264780056D0        μm(2)=0.5088817555826185D0 
  μm(3)=0.6943188875943850D0      μm(4)=0.8397599622366860D0 
  μm(5)=0.9634909811104704D0 
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„ S12 Level Symmetric Quadrature 
 
 

          S12                ξ     ξ 

     (+ + +) Octant            1           1 

     m-Level Diagram         2   2          2   3 

     (Sweep 2)             3   4   3              4   5   6 

                         3   5   5   3                 7   8   9  10 

                       2   4   5   4   2            11  12  13  14  15 

                     1   2   3   3   2   1        16  17  18  19  20  21 

                   μ                                          η       μ                                          η 

  wm(1)=0.07076258997008411D0      wm(2)=0.05588110156489365D0 
    wm(3)=0.03733767375882513D0     wm(4)=0.05028190106005664D0 
  wm(5)=0.02585129165575492D0 
 
   μm(1)=0.1672126528227026D0     μm(2)=0.4595476346425931D0 
  μm(3)=0.6280190966421315D0     μm(4)=0.7600210148336660D0 
  μm(5)=0.8722705430257244D0     μm(6)=0.9716377192513620D0 
 
 

„ S14 Level Symmetric Quadrature   
        
 

      S14                        ξ             ξ 

 (+ + +) Octant          1          1 

 m-Level Diagram           2   2                2   3  

 (Sweep 2)       3   5   3        4   5   6 

                       4   6   6   4                   7   8   9  10 

                     3   6   7   6   3              11  12  13  14  15 

                   2   5   6   6   5   2          16  17  18  19  20  21 

                 1   2   3   4   3   2   1      22  23  24  25  26  27  28 

               μ                                                  η     μ                                                   η 

  wm(1)=0.05799704089709301D0   wm(2)=0.04890079763671375D0 
  wm(3)=0.02214970797116879D0    wm(4)=0.04070085313525794D0 
  wm(5)=0.03938673868440395D0   wm(6)=0.02455175510137073D0 
  wm(7)=0.01213253759421592D0 
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  μm(1)=0.1519858614611801D0      μm(2)=0.4221569823048237D0 
  μm(3)=0.5773502691896257D0      μm(4)=0.6988920867758852D0 
  μm(5)=0.8022262552313840D0      μm(6)=0.8936910988743190D0 
  μm(7)=0.9766271529257242D0 
 
 

„ S16 Level Symmetric Quadrature   
     

      S16                     ξ                   ξ 

 (+ + +) Octant           1                1 

 m-Level Diagram        2   2                             2   3 

 (Sweep 2)            3   5   3                   4   5   6 

                    4   6   6   4                      7   8   9   10 

                  4   7   8   7   4                  11  12  13  14  15 

                3   6   8   8   6   3              16  17  18  19  20  21 

              2   5   6   7   6   5   2          22  23  24  25  26  27  28 

            1   2   3   4   4   3   2   1      29  30  31  32  33  34  35  36 

          μ                                                         η      μ                                                          η 

 

  wm(1)=0.04898723915796233D0    wm(2)=0.04132959786990422D0 
  wm(3)=0.02244759769020243D0    wm(4)=0.02440567883044038D0 
  wm(5)=0.03361864689378468D0    wm(6)=0.01567390172962426D0 
  wm(7)=0.03692573110461228D0     wm(8)=0.00608816393663137D0 
 
  μm(1)=0.1389568750676416D0     μm(2)=0.3922892614447836D0 
  μm(3)=0.5370965613008739D0     μm(4)=0.6504264506287802D0 
  μm(5)=0.7467505736146995D0     μm(6)=0.8319965569100706D0 
  μm(7)=0.9092855009437586D0     μm(8)=0.9805008790117792D0 
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„ S18 Level Symmetric Quadrature 
          

      S18                   ξ                ξ 

 (+ + +) Octant         1                  1 

 m-Level Diagram      2   2                                 2   3 

 (Sweep 2)          3   6   3                             4   5   6 

                  4   7   7   4                         7   8   9  10 

                5   8   9   8   5                    11  12  13  14  15 

              4   8  10  10   8   4                16  17  18  19  20  21 

            3   7   9  10   9   7   3            22  23  24  25  26  27  28 

          2   6   7   8   8   7   6   2        29  30  31  32  33  34  35  36 

        1   2   3   4   5   4   3   2   1    37  38  39  40  41  42  43  44  45 

              μ                                                            η     μ                                                                η 

 

  wm(1)=0.04226464488217149D0    wm(2)=0.03761274738552265D0 
  wm(3)=0.00669073200689742D0    wm(4)=0.03919193289514417D0 
    wm(5)=0.00425499717425421D0    wm(6)=0.04236619014295116D0 
   wm(7)=0.00923962764409376D0    wm(8)=0.01566475086155585D0 
   wm(9)=0.01365760464592128D0    wm(10)=0.01399031490160748D0           
 
  μm(1)=0.1293445045421084D0     μm(2)=0.3680438160525554D0 
  μm(3)=0.5041651517249193D0     μm(4)=0.6106625499349821D0 
   μm(5)=0.7011668842525139D0     μm(6)=0.7812561994964660D0 
  μm(7)=0.8538662066922110D0     μm(8)=0.9207680210618902D0 
   μm(9)=0.9831276612370913D0 
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„ S20 Level Symmetric Quadrature 
 

         

      S20               ξ                         ξ 

 (+ + +) Octant     1                      1 

 m-Level Diagram  2   2                                    2   3 

 (Sweep 2)      3   6   3                                4   5   6 

              4   7   7   4                            7   8   9  10 

            5   8   9   8   5                       11  12  13  14  15 

          5   9  10  10   9   5                   16  17  18  19  20  21 

        4   8  10  11  10   8   4               22  23  24  25  26  27  28 

      3   7   9  10  10   9   7   3           29  30  31  32  33  34  35  36 

    2   6   7   8   9   8   7   6   2       37  38  39  40  41  42  43  44  45 

  1   2   3   4   5   5   4   3   2   1   46  47  48  49  50  51  52  53  54  55 

   μ                                                                     η     μ                                                                     η 

 

  wm(1)=0.03702104906169415D0     wm(2)=0.03328421653654888D0 
  wm(3)=0.01396701489265008D0    wm(4)=0.02908513232048754D0   
  wm(5)=0.00623193004605474D0    wm(6)=0.02621667000444185D0 
  wm(7)=0.00228753938881476D0    wm(8)=0.03639912902091424D0 
  wm(9)=0.00899059601452543D0    wm(10)=0.00297606912156027D0 
  wm(11)=0.01095707875225638D0 
 
  μm(1)=0.1206033430392688D0     μm(2)=0.3475742923164429D0 
  μm(3)=0.4765192661438829D0     μm(4)=0.5773502691896257D0 
  μm(5)=0.6630204036531319D0     μm(6)=0.7388225619100911D0 
  μm(7)=0.8075404016607585D0     μm(8)=0.8708525837599884D0 
   μm(9)=0.9298639389547678D0     μm(10)=0.9853474855580162D0 
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ANGULAR OCTANT SWEEPING ASSIGNMENTS 

„ Octant numbers are assigned on the unit sphere with the signs given for each direction cosine.  Also listed are the 
starting corners where sweeping originates in a Cartesian system.  For a more detailed quadrature list, use the PENQUAD 
utility. 
 
     Summary of PENTRAN GENERAL OCTANT Sweeping Assignments 
 

     Sweep   μ     η          ξ   Start  Sweep   μ    η          ξ   Start 

    ----- ----- ----- ----- -----  ----- ----- ----- ----- ----- 

        1     -     -     -    FWN     2     +     +     +    BES  

           3     -     -     +    FWS     4     +     +     -    BEN  

           5     +     -     -    BWN     6     -     +     +    FES  

           7     +     -     +    BWS     8     -     +     -    FEN  

 

 

        B=Back(-x) F=Front(+x) E=East(-y) W=West(+y) S=South(-z) N=North(+z) 
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PENQUAD: SUPPLEMENTAL LEVEL SYMMETRIC ANGULAR DATA 

 In the event the user requires direct access to level symmetric angular quadrature data 
for a particular quadrature set, or would like to print out the entire quadrature set for 
assigning an angular source distribution in PENTRAN, the PENQUAD utility has been 
developed.  This utility outputs all of the quadrature data for any level-symmetric set in 
PENTRAN from Sn=S2 to S20, including all evaluated Legendre polynomials through P7, 
depending on the user-specified options.  A sample output from the PENQUAD utility for S4 
quadrature and P1 Legendre functions is given below (“aphi” is the azimuthal angle in 
radians): 
 
 
 PENQUAD S 4 Level Symmetric Quadrature in PENTRAN 4.xxbeta with P1 Legendre 
  i Sweep Omega    w           mu          eta           xi          aphi 
  1   1     1  4.16667E-02 -3.50021E-01 -3.50021E-01 -8.68890E-01 -1.95375E+00 
    P(0)= 1.00000E+00 P(1)=-3.50021E-01 
        P(1,1)*COS(1*aphi)= 3.50021E-01 
        P(1,1)*SIN(1*aphi)= 8.68890E-01 
  i Sweep Omega    w           mu          eta           xi          aphi 
  2   1     2  4.16667E-02 -8.68890E-01 -3.50021E-01 -3.50021E-01 -2.35619E+00 
    P(0)= 1.00000E+00 P(1)=-8.68890E-01 
        P(1,1)*COS(1*aphi)= 3.50021E-01 
        P(1,1)*SIN(1*aphi)= 3.50021E-01 
  i Sweep Omega    w           mu          eta           xi          aphi 
  3   1     3  4.16667E-02 -3.50021E-01 -8.68890E-01 -3.50021E-01 -2.75864E+00 
    P(0)= 1.00000E+00 P(1)=-3.50021E-01 
        P(1,1)*COS(1*aphi)= 8.68890E-01 
        P(1,1)*SIN(1*aphi)= 3.50021E-01 
  i Sweep Omega    w           mu          eta           xi          aphi 
  4   2     1  4.16667E-02  3.50021E-01  3.50021E-01  8.68890E-01  1.18785E+00 
    P(0)= 1.00000E+00 P(1)= 3.50021E-01 
        P(1,1)*COS(1*aphi)=-3.50021E-01 
        P(1,1)*SIN(1*aphi)=-8.68890E-01 
  i Sweep Omega    w           mu          eta           xi          aphi 
  5   2     2  4.16667E-02  8.68890E-01  3.50021E-01  3.50021E-01  7.85398E-01 
    P(0)= 1.00000E+00 P(1)= 8.68890E-01 
        P(1,1)*COS(1*aphi)=-3.50021E-01 
        P(1,1)*SIN(1*aphi)=-3.50021E-01 
  i Sweep Omega    w           mu          eta           xi          aphi 
  6   2     3  4.16667E-02  3.50021E-01  8.68890E-01  3.50021E-01  3.82950E-01 
    P(0)= 1.00000E+00 P(1)= 3.50021E-01 
        P(1,1)*COS(1*aphi)=-8.68890E-01 
        P(1,1)*SIN(1*aphi)=-3.50021E-01 
  i Sweep Omega    w           mu          eta           xi          aphi 
  7   3     1  4.16667E-02 -3.50021E-01 -3.50021E-01  8.68890E-01  1.95375E+00 
    P(0)= 1.00000E+00 P(1)=-3.50021E-01 
        P(1,1)*COS(1*aphi)= 3.50021E-01 
        P(1,1)*SIN(1*aphi)=-8.68890E-01 
  i Sweep Omega    w           mu          eta           xi          aphi 
  8   3     2  4.16667E-02 -8.68890E-01 -3.50021E-01  3.50021E-01  2.35619E+00 
    P(0)= 1.00000E+00 P(1)=-8.68890E-01 
        P(1,1)*COS(1*aphi)= 3.50021E-01 
        P(1,1)*SIN(1*aphi)=-3.50021E-01 
  i Sweep Omega    w           mu          eta           xi          aphi 
  9   3     3  4.16667E-02 -3.50021E-01 -8.68890E-01  3.50021E-01  2.75864E+00 
    P(0)= 1.00000E+00 P(1)=-3.50021E-01 
        P(1,1)*COS(1*aphi)= 8.68890E-01 
        P(1,1)*SIN(1*aphi)=-3.50021E-01 
  i Sweep Omega    w           mu          eta           xi          aphi 
 10   4     1  4.16667E-02  3.50021E-01  3.50021E-01 -8.68890E-01 -1.18785E+00 
    P(0)= 1.00000E+00 P(1)= 3.50021E-01 
        P(1,1)*COS(1*aphi)=-3.50021E-01 
        P(1,1)*SIN(1*aphi)= 8.68890E-01 
  i Sweep Omega    w           mu          eta           xi          aphi 
 11   4     2  4.16667E-02  8.68890E-01  3.50021E-01 -3.50021E-01 -7.85398E-01 
    P(0)= 1.00000E+00 P(1)= 8.68890E-01 
        P(1,1)*COS(1*aphi)=-3.50021E-01 
        P(1,1)*SIN(1*aphi)= 3.50021E-01 
  i Sweep Omega    w           mu          eta           xi          aphi 
 12   4     3  4.16667E-02  3.50021E-01  8.68890E-01 -3.50021E-01 -3.82950E-01 
    P(0)= 1.00000E+00 P(1)= 3.50021E-01 
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        P(1,1)*COS(1*aphi)=-8.68890E-01 
        P(1,1)*SIN(1*aphi)= 3.50021E-01 
  i Sweep Omega    w           mu          eta           xi          aphi 
 13   5     1  4.16667E-02  3.50021E-01 -3.50021E-01 -8.68890E-01 -1.95375E+00 
    P(0)= 1.00000E+00 P(1)= 3.50021E-01 
        P(1,1)*COS(1*aphi)= 3.50021E-01 
        P(1,1)*SIN(1*aphi)= 8.68890E-01 
  i Sweep Omega    w           mu          eta           xi          aphi 
 14   5     2  4.16667E-02  8.68890E-01 -3.50021E-01 -3.50021E-01 -2.35619E+00 
    P(0)= 1.00000E+00 P(1)= 8.68890E-01 
        P(1,1)*COS(1*aphi)= 3.50021E-01 
        P(1,1)*SIN(1*aphi)= 3.50021E-01 
  i Sweep Omega    w           mu          eta           xi          aphi 
 15   5     3  4.16667E-02  3.50021E-01 -8.68890E-01 -3.50021E-01 -2.75864E+00 
    P(0)= 1.00000E+00 P(1)= 3.50021E-01 
        P(1,1)*COS(1*aphi)= 8.68890E-01 
        P(1,1)*SIN(1*aphi)= 3.50021E-01 
  i Sweep Omega    w           mu          eta           xi          aphi 
 16   6     1  4.16667E-02 -3.50021E-01  3.50021E-01  8.68890E-01  1.18785E+00 
    P(0)= 1.00000E+00 P(1)=-3.50021E-01 
        P(1,1)*COS(1*aphi)=-3.50021E-01 
        P(1,1)*SIN(1*aphi)=-8.68890E-01 
  i Sweep Omega    w           mu          eta           xi          aphi 
 17   6     2  4.16667E-02 -8.68890E-01  3.50021E-01  3.50021E-01  7.85398E-01 
    P(0)= 1.00000E+00 P(1)=-8.68890E-01 
        P(1,1)*COS(1*aphi)=-3.50021E-01 
        P(1,1)*SIN(1*aphi)=-3.50021E-01 
  i Sweep Omega    w           mu          eta           xi          aphi 
 18   6     3  4.16667E-02 -3.50021E-01  8.68890E-01  3.50021E-01  3.82950E-01 
    P(0)= 1.00000E+00 P(1)=-3.50021E-01 
        P(1,1)*COS(1*aphi)=-8.68890E-01 
        P(1,1)*SIN(1*aphi)=-3.50021E-01 
  i Sweep Omega    w           mu          eta           xi          aphi 
 19   7     1  4.16667E-02  3.50021E-01 -3.50021E-01  8.68890E-01  1.95375E+00 
    P(0)= 1.00000E+00 P(1)= 3.50021E-01 
        P(1,1)*COS(1*aphi)= 3.50021E-01 
        P(1,1)*SIN(1*aphi)=-8.68890E-01 
  i Sweep Omega    w           mu          eta           xi          aphi 
 20   7     2  4.16667E-02  8.68890E-01 -3.50021E-01  3.50021E-01  2.35619E+00 
    P(0)= 1.00000E+00 P(1)= 8.68890E-01 
        P(1,1)*COS(1*aphi)= 3.50021E-01 
        P(1,1)*SIN(1*aphi)=-3.50021E-01 
  i Sweep Omega    w           mu          eta           xi          aphi 
 21   7     3  4.16667E-02  3.50021E-01 -8.68890E-01  3.50021E-01  2.75864E+00 
    P(0)= 1.00000E+00 P(1)= 3.50021E-01 
        P(1,1)*COS(1*aphi)= 8.68890E-01 
        P(1,1)*SIN(1*aphi)=-3.50021E-01 
  i Sweep Omega    w           mu          eta           xi          aphi 
 22   8     1  4.16667E-02 -3.50021E-01  3.50021E-01 -8.68890E-01 -1.18785E+00 
    P(0)= 1.00000E+00 P(1)=-3.50021E-01 
        P(1,1)*COS(1*aphi)=-3.50021E-01 
        P(1,1)*SIN(1*aphi)= 8.68890E-01 
  i Sweep Omega    w           mu          eta           xi          aphi 
 23   8     2  4.16667E-02 -8.68890E-01  3.50021E-01 -3.50021E-01 -7.85398E-01 
    P(0)= 1.00000E+00 P(1)=-8.68890E-01 
        P(1,1)*COS(1*aphi)=-3.50021E-01 
        P(1,1)*SIN(1*aphi)= 3.50021E-01 
  i Sweep Omega    w           mu          eta           xi          aphi 
 24   8     3  4.16667E-02 -3.50021E-01  8.68890E-01 -3.50021E-01 -3.82950E-01 
    P(0)= 1.00000E+00 P(1)=-3.50021E-01 
        P(1,1)*COS(1*aphi)=-8.68890E-01 
        P(1,1)*SIN(1*aphi)= 3.50021E-01 
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PENDATA: AUTOMATED POST-PROCESSING OF PARALLEL OUTPUT 

 The PENDATA utility has been developed to permit the user to gather and have selective 
access to any data field generated by a parallel run.  In a simple sense, the PENDATA utility 
removes most  of the pain of handling large, massively parallel binary and ASCII output data 
files from PENTRAN.  PENDATA can automatically process all output files or a single output 
file.  Fully automated data processing progresses by reading parallel storage information 
from the decomposition mapping table located at the end of any logfile from a parallel run.  
Automated or single file selection and gather of any output data, including Coarse Mesh 
Summary data (from ASCII output files) and any binary stored output data, can be 
performed using PENDATA.  The opening screen of PENDATA offers the following data 
manipulation choices, where the user must input an option number [1 to 9]: 
 

 
                       PENDATA 8.2   SINGLE PRECISION         
                  Data Post-Processor for PENTRAN Outputs     
                     Supporting  PENTRAN  Parallel  Sn        
                                  G. Sjoden                    
                                A. Haghighat                  
                            HSW Technologies LLC              
                                  Mar 2008                    
 
        # SCALAR  FLUX Options:  
        1 : Get COARSE MESH SUMMARY  Data from one '.1'  OUTPUT FILE 
           2 : Get Binary FLUX MOMENT   Data from one '.f1' OUTPUT FILE 
           3 : Get Binary SCALAR SOURCE Data from one '.s1' OUTPUT FILE 
 
          4 : Get Logfile & AutoMap PARALLEL COARSE MESH SUMMARY Data  
          5 : Get Logfile & AutoMap PARALLEL Binary FLUX MOMENT  Data  
          6 : Get Logfile & AutoMap PARALLEL Binary SOURCE       Data  
 
          # ANGULAR FLUX/CURRENT Options:  
          7 : Get Binary ANGULAR FLUX Data from one '.a1' OUTPUT FILE 
          8 : Get Logfile & AutoMap PARALLEL Binary ANGULAR FLUX Data 
          9 : Get Logfile & AutoMap PARALLEL Binary FLUX/CURRENT Data 
 
          For binary outputs (no labels), use -1,-2,-4, or -5 
          Enter Option #: 
 

 
 
 
A simple, self explanatory menu format follows each option, showing what data fields can be 
selectively stripped and automatically gathered.   
 
If an automated processing is selected, at least one logfile (e.g. probname.L1) from a 
processor participating in the parallel run must be located with all other output files 
in a common directory.   
 
PENDATA will prompt for all required user input, and then report progress as output files 
are scanned, data is stripped, and collection is made in ASCII table (column) format.  The 
user has freedom to name the output files in single file processing.   
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Automated data output files processed and stored by PENDATA based on the post-
processing choice number:  

• Option 4: fileprefix.crs   

• Option 5: fileprefix.flx   

• Option 6: fileprefix.src   

• Option 8: fileprefix.ang 

• Option 9: fileprefix.fjn 

• Binary output for all of these variables is possible by entering negative option 
numbers; no labels of the data will occur in the binary cases, and binary formats 
mirror formatted data. 

 
 Note:  In binary flux moment files (Options (2) or (5)), moments are reported by 
PENDATA beginning with a column entitled “flux moments,” with flux moments written in 
columns in the order of scalar, all cosine, and all sine angular moments.  Columns therefore 
include 2

2
1

2
2

2
1

22
1
1 ,

1
11 ,0 ,,,,,, SSCCSC φφφφφφφφφ , etc, as given in the theory section,  etc.   

 
Note that source files only yield scalar sources, and use of a single precision PENTRAN 
version requires a single precision PENDATA version for binary data compatability.   
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  6. SAMPLE PROBLEMS  

SIMPLE FIXED SOURCE INPUT DECK (FIXED SOURCE PROBLEM) 

This is a simple, homogeneous 3-D fixed source problem that is reflected along each 
boundary of the 1 cm width y-axis to simulate 2-D behavior.  The figure below depicts the 
geometry, and local coarse and fine cell numbering schemes used in PENTRAN; cells are 
alternating in transparency for illustration of the geometry.  In addition, there are four 
coarse mesh cells, with a uniform source placed throughout each coarse mesh in the 
geometry.  The cross sections are included in the input using the “cards” option for 
illustration. 
 
 

 
 
PENTRAN CODE PARAMETERS FOR THIS PROBLEM  
  maxmem,  maxpcs,  maxgcm,  maxxsg 
      80        1        4        0 
  maxcmc,  maxcrs,  maxmmc,  maxmed,  maxfmc,  maxfin 
       4        2      100      100      100      100 
  maxgrp,  maxglc,  maxswp,  maxqdm,  maxmat,  maxleg 
       2        2        8       10        1        3 
  maxsrc,  maxslc,  maxcmr,  maxlin,  maxarr,  nctlim 
       4        4        4      204     4000       20 
-----------------Start Problem Deck------------------- 
P3 SAMPLE PROBLEM--From M. Hunter     loglevel 3                         
1                                                                               
2  For PENTRAN                                                        
3  XZ P3 (P1 used) Scattering Problem                                           
4  -5x5 medium mesh, 25.0 cm by 25.0 cm, 2 groups, P3 scatter xs                
5  -S8 level symmetric quadrature, vacuum boundaries on front                   
6   and north bounds, reflective boundaries on back and south                   
7   bounds, (with reflective on east and west y axis bounds)                    
8  -Source is fixed uniformly distributed in group 1 only                       
9  -Supplied by M. Hunter                                                       
0                                                                               
/-----------------------------------------------------                          
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/  General Notes:                                                               
/    --input for columns 1-79 only                                              
/    --EACH FIRST parameter value MUST immediately                              
/    follow the EQUALS sign, with ANY format thereafter!!                       
/    --Anything following a slash is ignored as a comment                       
/    --Block Terminator T MUST be placed on the SAME LINE                       
/    as the LAST DATA ENTRY for a given block                                   
/  Block 0  (ABOVE:REQUIRED Inputs)                                             
/     1 problem HEADER card                                                     
/     10 problem TITLE cards follow                                             
/                                                                               
/--------------- BLOCK I -----------------------------                          
   ngeom=3d    /3D geometry                                                     
  ngroup=2 1    /2 energy groups                                                 
  isn=8                                                                         
   nmatl=1     /1 material                                                      
   ixcrs=2     /2 coarse meshes in x direction                                  
   jycrs=1     /1 coarse meshes in y direction                                  
   kzcrs=2     /2 coarse meshes in z direction                                  
   lodbal=0    /0 No Load balancing                                             
   timcut=0    /0 No wall-time (minutes) cutoff                                 
   tolmgd=-0.015    / multigrid tolerance                                       
   modadj=0    / forward                                                        
  decmpv=-1 -1 -1   T   / Decomposition weight vector                           
/                                                                               
/--------------- BLOCK II ----------------------------                          
                                                                                
  xmesh=0.0,15.0,25.0                                                           
/  ixmed=2 1 2 1      ixfine=3 2 3 2                                            
    ixmed=3 2 3 2      ixfine=3 2 3 2                                           
                                                                                
  ymesh=0.0,1.0                                                                 
  jymed=4R1          jyfine=4R1                                                 
                                                                                
  zmesh=0.0,15.0,25.0                                                           
  kzmed=2 2 1 1      kzfine=3 3 2 2                                             
/   kzmed=3 3 2 2      kzfine=3 3 2 2                                           
                                                                                
  nmattp=1 9R1       nmattp=2 6R1                                               
  nmattp=3 6R1       nmattp=4 4R1                                               
                                                                                
  flxini=4R9.0     mathmg=0 0 0 0    T                                          
/                                                                               
/-----------------------------------------------------                          
/   cross section library type--nxtyp                                           
/     0 STANDARD (row) form:  NO, Legendre consts NOT pre-multiplied            
/     1 STANDARD (row) form: YES, Legendre consts ARE pre-multiplied            
/     2 NON-STD  (col) form:  NO, Legendre consts NOT pre-multiplied            
/     3 NON-STD  (col) form: YES, Legendre consts ARE pre-multiplied            
/     4 STANDARD (row) BINARY FILE form:  NO, Legendre consts NOT pre-multiplie 
/     5 STANDARD (row) BINARY FILE form: YES, Legendre consts ARE pre-multiplie 
/     6 NON-STD  (col) BINARY FILE form:  NO, Legendre consts NOT pre-multiplie 
/     7 NON-STD  (col) BINARY FILE form: YES, Legendre consts ARE pre-multiplie 
/     8 GIP-ORNL       BINARY FILE form: YES, Legendre consts ARE pre-multiplie 
/                                                                               
/ ------------- BLOCK III (CROSS SECTIONS) -----------    
/  This problem includes cross sections in the input deck, not as a separate file                     
   lib=cards                                                                    
   legord=1   legoxs=3                                                          
   nxtyp=0                                                                      
   ihm=5   iht=3   ihs=4                                                        
   ihng=0                                                                       
   chig=1.0 0.1                                                                 
   nxcmnt=4    T                                                                
/   (slash used in col1 to allow use of upper case)                             
/   Material 1 Two-Group P0 xsections                                           
/     siga1     nusigf1    sigt1     sig_1->1    --------                       
/     siga2     nusigf2    sigt2     sig_2->2    sig_1->2                       
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    1.39306E-02 0.00000 1.22839E-01 5.21631E-02 0.00000                         
    1.32329E-02 0.00000 1.23884E-01 5.18270E-02 9.05113E-03                     
/                                                                               
/   Material 1 Two-Group P1 xsections                                           
/     siga1     nusigf1    sigt1     sig_1->1    --------                       
/     siga2     nusigf2    sigt2     sig_2->2    sig_1->2                       
    0.00000E+00 0.00000 0.00000E+00 4.61583E-02 0.00000                         
    0.00000E+00 0.00000 0.00000E+00 4.49890E-02 4.48667E-03                     
/                                                                               
/   Material 1 Two-Group P2 xsections                                           
/     siga1     nusigf1    sigt1     sig_1->1    --------                       
/     siga2     nusigf2    sigt2     sig_2->2    sig_1->2                       
    0.00000E+00 0.00000 0.00000E+00 3.94276E-02 0.00000                         
    0.00000E+00 0.00000 0.00000E+00 3.78602E-02 2.14926E-03                     
/                                                                               
/   Material 1 Two-Group P3 xsections                                           
/     siga1     nusigf1    sigt1     sig_1->1    --------                       
/     siga2     nusigf2    sigt2     sig_2->2    sig_1->2                       
    0.00000E+00 0.00000 0.00000E+00 3.31849E-02 0.00000                         
    0.00000E+00 0.00000 0.00000E+00 3.14823E-02 1.58553E-03  T                  
/            *** END OF XSECTION DATA ***                                       
/                                                                               
/------------- BLOCK IV (CONTROL OPTIONS) ---------------                       
  ncoupl=1                                                                      
  nprtyp=4                                                                      
  nrdblk=0                                                                      
   tolin=0.000001                                                               
  tolout=0.000001                                                               
  maxitr=180                                                                    
  methit=1   ndmeth=4R-1   nzonrb=4 /1  / nquit=4                               
  methac=3 T                                                                    
/                                                                               
/------------ BLOCK V (Sources) -------------------------                       
  nsdef=4R0                                                                     
  nscmsh=1           2          3          4                                    
    sref=7.5 .5 7.5  20 .5 7.5  7.5 .5 20  20 .5 20                             
    serg=1 0 3Q2                                                                
    smag=1.0         1.0        1.0        1.0   T                              
/          
/  this shows how the omegap option is used                                                           
/     omegap=1,-1,1,10R1 1,-1,2,10R1                                            
/            1,-1,3,10R1 1,-1,4,10R1                                            
/            1,-1,5,10R1 1,-1,6,10R1                                            
/            1,-1,7,10R1 1,-1,8,10R1  T                                         
/                                                                               
/------------- BLOCK VI (BOUNDARY CONDITIONS) -----------                       
/ var   type  GroupAlbedos   var   type GroupAlbedos                            
  ibback=1    1 1            ibfrnt=0                                           
  jbeast=1    1 1            jbwest=1   1 1                                     
  kbsout=1    1 1            kbnort=0 T                                         
/                                                                               
/-------------- BLOCK VII (PRINT/OUTPUT CONDITIONS) -------                     
/                                                                               
   nxspr=0    nmatpr=1   ngeopr=2                                               
   nsrcpr=0   nsumpr=1   meshpr=1 4                                           
   nfdump=1   nsdump=1   nadump=4,7    T                                        
/                                                                               
/----------------------------------------------------                           
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WESTINGHOUSE PIN INPUT DECK (KEFF PROBLEM) 

This is a pin demonstration problem that was used to benchmark PENBURN, the burnup 
and depletion module supporting the PENTRAN code system.  It serves as a good example of 
a criticality problem.   

 
 
 
   PARAMETERS FOR MEMORY ALLOCATION using F90: 
    maxmem,    maxpcs,    maxgcm,    maxxsg 
      2000         8         1         3 
    maxcmc,    maxcrs,   maxmmc,   maxmed,   maxfmc,   maxfin 
         1         1      8000        40      8000        40 
    maxgrp,    maxglc,   maxswp,   maxqdm,   maxmat,   maxleg 
         3         3         1        10         3         1 
    maxsrc,    maxslc,   maxcmr,   maxlin,   maxarr,   nctlim 
         0         0         1       189     53400       132 
/-----------------Start Problem Deck--------------- 
whpin                                                        loglevel 2 
generated by PENMSHXP version 1.5a 
Total Number of Fine Meshes:  8000 
Total Number of Coarse Meshes:  1 
Number of zlevs:  1 
Number of coarse mesh per z lev: 1 
6 
7 
8 
9 
10 
/ 
/-------------BLOCK I (GENERAL PROBLEM info.)----------- 
/ 
ngeom=3d 
modadj=0 
ngroup=3     
isn=8 
nmatl=3 
ixcrs=1 
jycrs=1 
kzcrs=1 
lodbal=0 
timcut=0. 
tolmgd=-0.200 
decmpv=-8 -1 -1  T 
/ 
/------------------BLOCK II(geometry)------------------ 
/ 
/ x coarse-mesh position 
/ 
xmesh=-6.3250E-01  6.3250E-01 
/ 
/ x fine mesh distribution for zlev=  1 
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/ 
ixfine=40 
/ 
/ x medium mesh distribution for zlev=  1 
/ 
ixmed=40 
/ 
/ y coarse-mesh position 
/ 
ymesh=-6.3250E-01  6.3250E-01 
/ 
/ y fine mesh distribution for zlev=  1 
/ 
jyfine=40 
/ 
/ y medium mesh distribution for zlev=  1 
/ 
jymed=40 
/ 
/ z coarse-mesh position 
/ 
zmesh= 0.0000E+00  1.0000E+01 
/ 
/ z fine mesh distribution for zlev=  1 
/ 
kzfine=5 
/ 
/ z medium mesh distribution for zlev=  1 
/ 
kzmed=5 
/ 
/  material distribution for zlev=  1 
/ 
    nmattp=1 
257R3 6R2 31R3 4R2 4R1 4R2 26R3 3R2 10R1 3R2 23R3 2R2 14R1 2R2 21R3 2R2 16R1 
2R2 19R3 2R2 18R1 2R2 17R3 2R2 20R1 2R2 16R3 2 22R1 2 15R3 2R2 22R1 2R2 14R3 2 
24R1 1Q40 2 13R3 2R2 24R1 2R2 12R3 2 26R1 3Q40 2 12R3 2R2 24R1 2R2 13R3 2 24R1 
2 14R3 1Q40 2R2 22R1 2R2 15R3 2 22R1 2 16R3 2R2 20R1 2R2 17R3 2R2 18R1 2R2 
19R3 2R2 16R1 2R2 21R3 2R2 14R1 2R2 23R3 3R2 10R1 3R2 26R3 4R2 4R1 4R2 31R3 
6R2 257R3 4Q1600 
flxini=1000.000 
mathmg=0    T 
/ 
/ ------------- BLOCK III (CROSS SECTIONS) ----------- 
/ 
lib=file:whpin.xs 
legord=1  legoxs=1 
nxtyp=1 
ihm=6 
iht=3  ihs=4 
ihng=0 
/ 
/    Material   1  uo2              Chi Values 
/    For whpin.xs        Grps   1 -  3  ntemp = t 
chig=6.93859E-01 3.06141E-01 2.12672E-10 
/ 
/    Material   2  zr               Chi Values 
/    For whpin.xs        Grps   1 -  3  ntemp = t 
 0.00000E+00 0.00000E+00 0.00000E+00 
/ 
/    Material   3  h2o              Chi Values 
/    For whpin.xs        Grps   1 -  3  ntemp = t 
 0.00000E+00 0.00000E+00 0.00000E+00 
nxcmnt=2    T 
/ 
/------------- BLOCK IV (CONTROL OPTIONS) -------------- 
/ 
ncoupl=1 
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nprtyp=0 
nrdblk=0 
tolin=5.00E-05 
tolout=5.00E-05 
dtwmxw=0.95 
maxitr=200    20 
methit=1 
/ 
/  Starting or selected differencing scheme,for each coarse-mesh, for z-level=   1 
/ penmsh default is 2 
ndmeth=4 
nzonrb=1  0.999  0 
methac=1      T 
/------------------BLOCK V(source)------------------ 
/ 
rkdef=1.000   T 
/ 
/------------- BLOCK VI (BOUNDARY CONDITIONS) --------- 
/ 
/ var   type  Group albedos 
ibback=1   3R1 
ibfrnt=1   3R1 
jbeast=1   3R1 
jbwest=1   3R1 
kbsout=1   3R1 
kbnort=1   3R1        T 
/ 
/------------- BLOCK VII (PRINTING CONDITIONS) --------- 
/ 
/ 
nxspr=0 nmatpr=1 ngeopr=1 nsrcpr=0 nsumpr=1 
meshpr=-1 
nfdump=2 nsdump=1 njdump=0 
nadump=0     T                                                            
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GERMANIUM ‘CARDD’ DETECTOR ADJOINT (WITH PENMSH-XP INPUT FILES) 

For this problem we have included the penmsh-xp automatic mesh generation utility files, 
which build a problem mesh.  The problem is illustrated in Figure 2.29 of this document.  
The problem is a detector adjoint that will yield the inherent detector efficiency of any 
gamma ray in the system at any location in the detector system geometry. 

 
 
The details of automatic problem input deck generation and source projection are best 
presented in the PENMSH-XP manual; however, for illustration,  we have included the 
minimal inputs required for the PENMSH-XP software.  In only a few minutes, one can build 
a 3-D model and render graphics slices using the DISLIN library (generating .png files) and a 
3-D geometry plot (set up for the TecPlotTM  Graphics package).  A material balance feature, 
scaling, source placement, 3-D object placement, etc are all available in the PENMSH-XP 
utility for use with PENTRAN.   
 
The following files are processed by PENMSH-XP and represent the model called ‘CARDD’: 
 
 ‘PENMSH.INP’ file: a file detailing an overall system geometry and parameters 
 ‘CARDD1.INP’: file describing the first z-level mesh structure for a model 
 ‘CARDD2.INP’: file describing the second z-level mesh structure for a model 

‘CARDD3.INP’: file describing the third z-level mesh structure for a model 
 ‘CARDD4.INP’: file describing the fourth z-level mesh structure for a model 

‘CARDD.SPC’: file describing the energy spectrum for 90 gamma energy groups 
 
When processed by PENMSH-XP, these files create a ‘CARDD.f90’ file, which is a PENTRAN 
input deck that can be further editied for specific user-desired settings. 
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PENMSH.INP FILE FOR ‘CARDD’ MODEL 

cardd 
/no. coarse z-levels, no. of materials, imath 
4,4,0 
/z-level coarse mesh boundaries 
0., 10.0, 16.0, 28.0, 30.0 
/max. number of fine z-mesh per coarse z-level 
16 16 16 16 16 
/fine-to-med grid ratio along x.., y.., z.. in each coarse z-level 
2 2 2 2 2  
2 2 2 2 2 
2 2 2 2 2 
/source format, # x-src mesh, # y-src mesh, # z-src mesh, ngrp, sn, pn 
-1,1,1,1,90,8,1 
/xsec type, xsec #comment cards, xsec Leg order, ihm  
2,2,1,93 
/Bdy conds: ibback(-x),ibfrnt(+x),jbeast(-y),jbwest(+y),kbsout(-z),kbnort(+z) 
0,0,0,0,0,0 
/source material id (if iso <0, need that number of sources) 
3 
/source magnitude(s) 
1.0 
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1ST Z-LEVEL FOR PENMSH-XP UTILITY: CARDD1.INP 

/ncx, ncy, maxfinz  (maxfinz < 0, add z-fine per cm below y-fine) 
5, 5,-16 
/ x-fine mesh per cm (# seq along cm rows of x) 
 4 12 10 12 4 
 4 12 10 12 4 
 4 12 16 12 4 
 4 12 10 12 4 
 4 12 10 12 4 
/ y-fine mesh per cm (# seq ... y) 
4 4 4 4 4 
12 12 12 12 12 
10 10 16 10 10 
12 12 12 12 12 
4 4 4 4 4 
/ z-fine mesh per cm (# seq ... z) 
 7  7  7  7  7 
 7  7  7  7  7 
 7  7  7  7  7 
 7  7  7  7  7 
 7  7  7  7  7 
/ cm bounds along x-axis (in seq ...x) 
0., 2.0, 12.0, 18.0, 28.0, 30.0  
/cm bounds along y-axis (in seq ...x) 
0., 2.0, 12.0, 18.0, 28.0, 30.0      
/ cm type, each cm (<0 =look for overlay) 
 1 1 1 1 1 
 1 -1 -1 -1 1 
 1 -1 -1 -1 1 
 1 -1 -1 -1 1 
 1 1 1 1 1 
/ number of matl regns per cm;  
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
/material id for coarse mesh 1 
1 
/material id for coarse mesh 2 
1 
/material id for coarse mesh 3 
1 
/material id for coarse mesh 4 
1 
/material id for coarse mesh 5 
1 
/material id for coarse mesh 6 
1 
/material id for coarse mesh 7 
4 
/material id for coarse mesh 8 
4 
/material id for coarse mesh 9 
4 
/material id for coarse mesh 10 
1 
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/material id for coarse mesh 11 
1 
/material id for coarse mesh 12 
4 
/material id for coarse mesh 13 
4 
/material id for coarse mesh 14 
4 
/material id for coarse mesh 15 
1 
/material id for coarse mesh 16 
1 
/material id for coarse mesh 17 
4 
/material id for coarse mesh 18 
4 
/material id for coarse mesh 19 
4 
/material id for coarse mesh 20 
1 
/material id for coarse mesh 21 
1 
/material id for coarse mesh 22 
1 
/material id for coarse mesh 23 
1 
/material id for coarse mesh 24 
1 
/material id for coarse mesh 25 
1 
/ overlay cm 7 (#over, shape1 4=sphere, mat#1.., xlo1.., xhi1.., ylo1.., yhi1..) 
1 
1 
1 
0., 30., 0., 30.0, 0.0, 2.0  
/ overlay cm 8 (#over, shape1 4=sphere, mat#1.., xlo1.., xhi1.., ylo1.., yhi1..) 
1 
1 
1 
0., 30., 0., 30.0, 0.0, 2.0  
/ overlay cm 9 (#over, shape1 4=sphere, mat#1.., xlo1.., xhi1.., ylo1.., yhi1..) 
1 
1 
1 
0., 30., 0., 30.0, 0.0, 2.0  
/ overlay cm 12 (#over, shape1 4=sphere, mat#1.., xlo1.., xhi1.., ylo1.., 
yhi1..) 
1 
1 
1 
0., 30., 0., 30.0, 0.0, 2.0  
/ overlay cm 13 (#over, shape1 4=sphere, mat#1.., xlo1.., xhi1.., ylo1.., 
yhi1..) 
2 
1 2 
1 2 
0., 30., 0., 30.0, 0.0, 2.0  
14., 16., 14., 16.0  
/ overlay cm 14 (#over, shape1 4=sphere, mat#1.., xlo1.., xhi1.., ylo1.., 
yhi1..) 
1 
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1 
1 
0., 30., 0., 30.0, 0.0, 2.0  
/ overlay cm 17 (#over, shape1 4=sphere, mat#1.., xlo1.., xhi1.., ylo1.., 
yhi1..) 
1 
1 
1 
0., 30., 0., 30.0, 0.0, 2.0  
/ overlay cm 18 (#over, shape1 4=sphere, mat#1.., xlo1.., xhi1.., ylo1.., 
yhi1..) 
1 
1 
1 
0., 30., 0., 30.0, 0.0, 2.0  
/ overlay cm 19 (#over, shape1 4=sphere, mat#1.., xlo1.., xhi1.., ylo1.., 
yhi1..) 
1 
1 
1 
0., 30., 0., 30.0, 0.0, 2.0  
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2ND Z-LEVEL FOR PENMSH-XP UTILITY: CARDD2.INP 

/ncx, ncy, maxfinz  (maxfinz < 0, add z-fine per cm below y-fine) 
5, 5,-16 
/ x-fine mesh per cm (# seq along cm rows of x) 
 4 12 10 12 4 
 4 12 10 12 4 
 4 12 16 12 4 
 4 12 10 12 4 
 4 12 10 12 4 
/ y-fine mesh per cm (# seq ... y) 
4 4 4 4 4 
12 12 12 12 12 
10 10 16 10 10 
12 12 12 12 12 
4 4 4 4 4 
/ z-fine mesh per cm (# seq ... z) 
10 10 10 10 10 
10 10 10 10 10 
10 10 10 10 10 
10 10 10 10 10 
10 10 10 10 10 
/ cm bounds along x-axis (in seq ...x) 
0., 2.0, 12.0, 18.0, 28.0, 30.0  
/cm bounds along y-axis (in seq ...x) 
0., 2.0, 12.0, 18.0, 28.0, 30.0      
/ cm type, each cm (<0 =look for overlay) 
 1 1 1 1 1 
 1 1 1 1 1 
 1 1 -1 1 1 
 1 1 1 1 1 
 1 1 1 1 1 
/ number of matl regns per cm;  
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
/material id for coarse mesh 26 
1 
/material id for coarse mesh 27 
1 
/material id for coarse mesh 28 
1 
/material id for coarse mesh 29 
1 
/material id for coarse mesh 30 
1 
/material id for coarse mesh 31 
1 
/material id for coarse mesh 32 
4 
/material id for coarse mesh 33 
4 
/material id for coarse mesh 34 
4 
/material id for coarse mesh 35 
1 
/material id for coarse mesh 36 
1 
/material id for coarse mesh 37 
4 
/material id for coarse mesh 38 
4 
/material id for coarse mesh 39 
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4 
/material id for coarse mesh 40 
1 
/material id for coarse mesh 41 
1 
/material id for coarse mesh 42 
4 
/material id for coarse mesh 43 
4 
/material id for coarse mesh 44 
4 
/material id for coarse mesh 45 
1 
/material id for coarse mesh 46 
1 
/material id for coarse mesh 47 
1 
/material id for coarse mesh 48 
1 
/material id for coarse mesh 49 
1 
/material id for coarse mesh 50 
1 
/ overlay cm 38 (#over, shape1 4=sphere, mat#1.., xlo1.., xhi1.., ylo1.., yhi1) 
2 
2 2 
2 3 
12., 18., 12., 18.0  
12.1, 17.9, 12.1, 17.9  
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3RD Z-LEVEL FOR PENMSH-XP UTILITY: CARDD3.INP 

/ncx, ncy, maxfinz  (maxfinz < 0, add z-fine per cm below y-fine) 
5, 5,-16 
/ x-fine mesh per cm (# seq along cm rows of x) 
 4 12 10 12 4 
 4 12 10 12 4 
 4 12 16 12 4 
 4 12 10 12 4 
 4 12 10 12 4 
/ y-fine mesh per cm (# seq ... y) 
4 4 4 4 4 
12 12 12 12 12 
10 10 16 10 10 
12 12 12 12 12 
4 4 4 4 4 
/ z-fine mesh per cm (# seq ... z) 
 4  4  4  4  4 
 4  4  4  4  4 
 4  4  4  4  4 
 4  4  4  4  4 
 4  4  4  4  4 
/ cm bounds along x-axis (in seq ...x) 
0., 2.0, 12.0, 18.0, 28.0, 30.0  
/cm bounds along y-axis (in seq ...x) 
0., 2.0, 12.0, 18.0, 28.0, 30.0      
/ cm type, each cm (<0 =look for overlay) 
 1 1 1 1 1 
 1 1 1 1 1 
 1 1 1 1 1 
 1 1 1 1 1 
 1 1 1 1 1 
/ number of matl regns per cm;  
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
/material id for coarse mesh 51 
1 
/material id for coarse mesh 52 
1 
/material id for coarse mesh 53 
1 
/material id for coarse mesh 54 
1 
/material id for coarse mesh 55 
1 
/material id for coarse mesh 56 
1 
/material id for coarse mesh 57 
4 
/material id for coarse mesh 58 
4 
/material id for coarse mesh 59 
4 
/material id for coarse mesh 60 
1 
/material id for coarse mesh 61 
1 
/material id for coarse mesh 62 
4 
/material id for coarse mesh 63 
4 
/material id for coarse mesh 64 
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4 
/material id for coarse mesh 65 
1 
/material id for coarse mesh 66 
1 
/material id for coarse mesh 67 
4 
/material id for coarse mesh 68 
4 
/material id for coarse mesh 69 
4 
/material id for coarse mesh 70 
1 
/material id for coarse mesh 71 
1 
/material id for coarse mesh 72 
1 
/material id for coarse mesh 73 
1 
/material id for coarse mesh 74 
1 
/material id for coarse mesh 75 
1 
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4TH  Z-LEVEL FOR PENMSH-XP UTILITY: CARDD4.INP 

/ncx, ncy, maxfinz  (maxfinz < 0, add z-fine per cm below y-fine) 
5, 5,-16 
/ x-fine mesh per cm (# seq along cm rows of x) 
 4 12 10 12 4 
 4 12 10 12 4 
 4 12 16 12 4 
 4 12 10 12 4 
 4 12 10 12 4 
/ y-fine mesh per cm (# seq ... y) 
4 4 4 4 4 
12 12 12 12 12 
10 10 16 10 10 
12 12 12 12 12 
4 4 4 4 4 
/ z-fine mesh per cm (# seq ... z) 
 4  4  4  4  4 
 4  4  4  4  4 
 4  4  4  4  4 
 4  4  4  4  4 
 4  4  4  4  4 
/ cm bounds along x-axis (in seq ...x) 
0., 2.0, 12.0, 18.0, 28.0, 30.0  
/cm bounds along y-axis (in seq ...x) 
0., 2.0, 12.0, 18.0, 28.0, 30.0      
/ cm type, each cm (<0 =look for overlay) 
 1 1 1 1 1 
 1 1 1 1 1 
 1 1 1 1 1 
 1 1 1 1 1 
 1 1 1 1 1 
/ number of matl regns per cm;  
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
1 1 1 1 1 
/material id for coarse mesh 1 
1 
/material id for coarse mesh 2 
1 
/material id for coarse mesh 3 
1 
/material id for coarse mesh 4 
1 
/material id for coarse mesh 5 
1 
/material id for coarse mesh 6 
1 
/material id for coarse mesh 7 
1 
/material id for coarse mesh 8 
1 
/material id for coarse mesh 9 
1 
/material id for coarse mesh 10 
1 
/material id for coarse mesh 11 
1 
/material id for coarse mesh 12 
1 
/material id for coarse mesh 13 
1 
/material id for coarse mesh 14 
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1 
/material id for coarse mesh 15 
1 
/material id for coarse mesh 16 
1 
/material id for coarse mesh 17 
1 
/material id for coarse mesh 18 
1 
/material id for coarse mesh 19 
1 
/material id for coarse mesh 20 
1 
/material id for coarse mesh 21 
1 
/material id for coarse mesh 22 
1 
/material id for coarse mesh 23 
1 
/material id for coarse mesh 24 
1 
/material id for coarse mesh 25 
1 
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SPECTRUM FOR PENMSH-XP CARDD PROBLEM: CARDD.SPC 

       12.755700 
        7.528220 
        4.897690 
        3.361800 
        2.401790 
        1.771920 
        1.343690 
        1.042930 
    8.256040E-01 
    6.647150E-01 
    5.431070E-01 
    4.495090E-01 
    3.763110E-01 
    3.182580E-01 
    2.716340E-01 
    2.337620E-01 
    2.026860E-01 
    1.769500E-01 
    1.554560E-01 
    1.373650E-01 
    1.220310E-01 
    1.089500E-01 
    9.771730E-02 
    8.802300E-02 
    7.961080E-02 
    7.228340E-02 
    6.584970E-02 
    6.019590E-02 
    5.519450E-02 
    5.076640E-02 
    4.682600E-02 
    4.330530E-02 
    4.015610E-02 
    3.732440E-02 
    3.477280E-02 
    3.246720E-02 
    3.037850E-02 
    2.847840E-02 
    2.675290E-02 
    2.517780E-02 
    2.373680E-02 
    2.241620E-02 
    2.120150E-02 
    2.008880E-02 
    1.905990E-02 
    1.810910E-02 
    1.702390E-02 
    1.602650E-02 
    1.344990E-02 
    1.133660E-02 
    1.059710E-02 
    9.572350E-03 
    8.618260E-03 
    8.055610E-03 
    7.800980E-03 
    7.440710E-03 
    7.103430E-03 
    6.892680E-03 
    6.595830E-03 
    6.316800E-03 
    6.141790E-03 
    5.972450E-03 
    5.663070E-03 



 

                                                          155                                                 Appendix 

    5.373160E-03 
    5.238050E-03 
    4.985470E-03 
    4.639900E-03 
    4.430850E-03 
    4.232520E-03 
    3.944120E-03 
    3.764140E-03 
    3.651710E-03 
    3.544880E-03 
    3.432820E-03 
    3.331390E-03 
    3.190230E-03 
    3.074720E-03 
    2.988750E-03 
    2.932340E-03 
    3.060820E-03 
    3.419640E-03 
    3.698670E-03 
    4.039550E-03 
    5.392230E-03 
    6.845250E-03 
    7.331700E-03 
    1.008930E-02 
    1.275910E-02 
    1.559440E-02 
    1.824990E-02  
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PENTRAN INPUT DECK GENERATED BY PENMSH-XP: ‘CARDD’ PROBLEM 

PENTRAN CODE PARAMETERS FOR THIS PROBLEM  
  maxmem,  maxpcs,  maxgcm,  maxxsg 
    2100        8      100       90 
  maxcmc,  maxcrs,  maxmmc,  maxmed,  maxfmc,  maxfin 
      25        5     2560       32     2560       64 
  maxgrp,  maxglc,  maxswp,  maxqdm,  maxmat,  maxleg 
      90        1        4      136        4        1 
  maxsrc,  maxslc,  maxcmr,  maxlin,  maxarr,  nctlim 
       1        1      100      611  2304000    10000 
-----------------Start Problem Deck------------------- 
cardd                                                         loglevel 2  
generated by PENMSHXP version 1.5a                                              
Total Number of Fine Meshes:  48000                                             
Total Number of Coarse Meshes:  100                                             
Number of zlevs:  4                                                             
Number of coarse mesh per z lev: 25                                             
6                                                                               
7                                                                               
8                                                                               
9                                                                               
10                                                                              
/                                                                               
/-------------BLOCK I (GENERAL PROBLEM info.)-----------                        
/                                                                               
ngeom=3d                                                                        
modadj=1                                                                        
ngroup=90    1                                                                  
isn=-30                                                                         
nmatl=4                                                                         
ixcrs=5                                                                         
jycrs=5                                                                         
kzcrs=4                                                                         
lodbal=0                                                                        
timcut=0.                                                                       
tolmgd=-0.200                                                                   
decmpv=-2 -1 -4  T                                                              
/                                                                               
/------------------BLOCK II(geometry)------------------                         
/                                                                               
/ x coarse-mesh position                                                        
/                                                                               
xmesh= 0.0000E+00  2.0000E+00  1.2000E+01  1.8000E+01  2.8000E+01  3.0000E+01   
/                                                                               
/ x fine mesh distribution for zlev=  1                                         
/                                                                               
ixfine=4 12 10 12 4                                                             
       4 12 10 12 4                                                             
       4 12 16 12 4                                                             
       4 12 10 12 4                                                             
       4 12 10 12 4                                                             
/                                                                               
/ x fine mesh distribution for zlev=  2                                         
/                                                                               
       4 12 10 12 4                                                             
       4 12 10 12 4                                                             
       4 12 16 12 4                                                             
       4 12 10 12 4                                                             
       4 12 10 12 4                                                             
/                                                                               
/ x fine mesh distribution for zlev=  3                                         
/                                                                               
       4 12 10 12 4                                                             
       4 12 10 12 4                                                             
       4 12 16 12 4                                                             
       4 12 10 12 4                                                             
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       4 12 10 12 4                                                             
/                                                                               
/ x fine mesh distribution for zlev=  4                                         
/                                                                               
       4 12 10 12 4                                                             
       4 12 10 12 4                                                             
       4 12 16 12 4                                                             
       4 12 10 12 4                                                             
       4 12 10 12 4                                                             
/                                                                               
/ x medium mesh distribution for zlev=  1                                       
/                                                                               
ixmed=2 6 5 6 2                                                                 
      2 6 5 6 2                                                                 
      2 6 8 6 2                                                                 
      2 6 5 6 2                                                                 
      2 6 5 6 2                                                                 
/                                                                               
/ x medium mesh distribution for zlev=  2                                       
/                                                                               
      2 6 5 6 2                                                                 
      2 6 5 6 2                                                                 
      2 6 8 6 2                                                                 
      2 6 5 6 2                                                                 
      2 6 5 6 2                                                                 
/                                                                               
/ x medium mesh distribution for zlev=  3                                       
/                                                                               
      2 6 5 6 2                                                                 
      2 6 5 6 2                                                                 
      2 6 8 6 2                                                                 
      2 6 5 6 2                                                                 
      2 6 5 6 2                                                                 
/                                                                               
/ x medium mesh distribution for zlev=  4                                       
/                                                                               
      2 6 5 6 2                                                                 
      2 6 5 6 2                                                                 
      2 6 8 6 2                                                                 
      2 6 5 6 2                                                                 
      2 6 5 6 2                                                                 
/                                                                               
/ y coarse-mesh position                                                        
/                                                                               
ymesh= 0.0000E+00  2.0000E+00  1.2000E+01  1.8000E+01  2.8000E+01  3.0000E+01   
/                                                                               
/ y fine mesh distribution for zlev=  1                                         
/                                                                               
jyfine=4 4 4 4 4                                                                
       12 12 12 12 12                                                           
       10 10 16 10 10                                                           
       12 12 12 12 12                                                           
       4 4 4 4 4                                                                
/                                                                               
/ y fine mesh distribution for zlev=  2                                         
/                                                                               
       4 4 4 4 4                                                                
       12 12 12 12 12                                                           
       10 10 16 10 10                                                           
       12 12 12 12 12                                                           
       4 4 4 4 4                                                                
/                                                                               
/ y fine mesh distribution for zlev=  3                                         
/                                                                               
       4 4 4 4 4                                                                
       12 12 12 12 12                                                           
       10 10 16 10 10                                                           
       12 12 12 12 12                                                           
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       4 4 4 4 4                                                                
/                                                                               
/ y fine mesh distribution for zlev=  4                                         
/                                                                               
       4 4 4 4 4                                                                
       12 12 12 12 12                                                           
       10 10 16 10 10                                                           
       12 12 12 12 12                                                           
       4 4 4 4 4                                                                
/                                                                               
/ y medium mesh distribution for zlev=  1                                       
/                                                                               
jymed=2 2 2 2 2                                                                 
      6 6 6 6 6                                                                 
      5 5 8 5 5                                                                 
      6 6 6 6 6                                                                 
      2 2 2 2 2                                                                 
/                                                                               
/ y medium mesh distribution for zlev=  2                                       
/                                                                               
      2 2 2 2 2                                                                 
      6 6 6 6 6                                                                 
      5 5 8 5 5                                                                 
      6 6 6 6 6                                                                 
      2 2 2 2 2                                                                 
/                                                                               
/ y medium mesh distribution for zlev=  3                                       
/                                                                               
      2 2 2 2 2                                                                 
      6 6 6 6 6                                                                 
      5 5 8 5 5                                                                 
      6 6 6 6 6                                                                 
      2 2 2 2 2                                                                 
/                                                                               
/ y medium mesh distribution for zlev=  4                                       
/                                                                               
      2 2 2 2 2                                                                 
      6 6 6 6 6                                                                 
      5 5 8 5 5                                                                 
      6 6 6 6 6                                                                 
      2 2 2 2 2                                                                 
/                                                                               
/ z coarse-mesh position                                                        
/                                                                               
zmesh= 0.0000E+00  1.0000E+01  1.6000E+01  2.8000E+01  3.0000E+01               
/                                                                               
/ z fine mesh distribution for zlev=  1                                         
/                                                                               
kzfine=7 7 7 7 7                                                                
       7 7 7 7 7                                                                
       7 7 7 7 7                                                                
       7 7 7 7 7                                                                
       7 7 7 7 7                                                                
/                                                                               
/ z fine mesh distribution for zlev=  2                                         
/                                                                               
       10 10 10 10 10                                                           
       10 10 10 10 10                                                           
       10 10 10 10 10                                                           
       10 10 10 10 10                                                           
       10 10 10 10 10                                                           
/                                                                               
/ z fine mesh distribution for zlev=  3                                         
/                                                                               
       4 4 4 4 4                                                                
       4 4 4 4 4                                                                
       4 4 4 4 4                                                                
       4 4 4 4 4                                                                
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       4 4 4 4 4                                                                
/                                                                               
/ z fine mesh distribution for zlev=  4                                         
/                                                                               
       4 4 4 4 4                                                                
       4 4 4 4 4                                                                
       4 4 4 4 4                                                                
       4 4 4 4 4                                                                
       4 4 4 4 4                                                                
/                                                                               
/ z medium mesh distribution for zlev=  1                                       
/                                                                               
kzmed=3 3 3 3 3                                                                 
      3 3 3 3 3                                                                 
      3 3 3 3 3                                                                 
      3 3 3 3 3                                                                 
      3 3 3 3 3                                                                 
/                                                                               
/ z medium mesh distribution for zlev=  2                                       
/                                                                               
      5 5 5 5 5                                                                 
      5 5 5 5 5                                                                 
      5 5 5 5 5                                                                 
      5 5 5 5 5                                                                 
      5 5 5 5 5                                                                 
/                                                                               
/ z medium mesh distribution for zlev=  3                                       
/                                                                               
      2 2 2 2 2                                                                 
      2 2 2 2 2                                                                 
      2 2 2 2 2                                                                 
      2 2 2 2 2                                                                 
      2 2 2 2 2                                                                 
/                                                                               
/ z medium mesh distribution for zlev=  4                                       
/                                                                               
      2 2 2 2 2                                                                 
      2 2 2 2 2                                                                 
      2 2 2 2 2                                                                 
      2 2 2 2 2                                                                 
      2 2 2 2 2                                                                 
/                                                                               
/  material distribution for zlev=  1                                           
/                                                                               
    nmattp=1                                                                    
112R1                                                                           
    nmattp=2                                                                    
336R1                                                                           
    nmattp=3                                                                    
280R1                                                                           
    nmattp=4                                                                    
336R1                                                                           
    nmattp=5                                                                    
112R1                                                                           
    nmattp=6                                                                    
336R1                                                                           
    nmattp=7                                                                    
144R1 864R4                                                                     
    nmattp=8                                                                    
120R1 720R4                                                                     
    nmattp=9                                                                    
144R1 864R4                                                                     
    nmattp=10                                                                   
336R1                                                                           
    nmattp=11                                                                   
280R1                                                                           
    nmattp=12                                                                   
120R1 720R4                                                                     
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    nmattp=13                                                                   
87R1 2R2 13R1 4R2 11R1 6R2 10R1 6R2 11R1 4R2 13R1 2R2 87R1 87R4 2R2 13R4 4R2    
11R4 6R2 10R4 6R2 11R4 4R2 13R4 2R2 174R4 4Q256 2R2 13R4 4R2 11R4 6R2 10R4 6R2  
11R4 4R2 13R4 2R2 87R4                                                          
    nmattp=14                                                                   
120R1 720R4                                                                     
    nmattp=15                                                                   
280R1                                                                           
    nmattp=16                                                                   
336R1                                                                           
    nmattp=17                                                                   
144R1 864R4                                                                     
    nmattp=18                                                                   
120R1 720R4                                                                     
    nmattp=19                                                                   
144R1 864R4                                                                     
    nmattp=20                                                                   
336R1                                                                           
    nmattp=21                                                                   
112R1                                                                           
    nmattp=22                                                                   
336R1                                                                           
    nmattp=23                                                                   
280R1                                                                           
    nmattp=24                                                                   
336R1                                                                           
    nmattp=25                                                                   
112R1                                                                           
/  material distribution for zlev=  2                                           
/                                                                               
    nmattp=26                                                                   
160R1                                                                           
    nmattp=27                                                                   
480R1                                                                           
    nmattp=28                                                                   
400R1                                                                           
    nmattp=29                                                                   
480R1                                                                           
    nmattp=30                                                                   
160R1                                                                           
    nmattp=31                                                                   
480R1                                                                           
    nmattp=32                                                                   
1440R4                                                                          
    nmattp=33                                                                   
1200R4                                                                          
    nmattp=34                                                                   
1440R4                                                                          
    nmattp=35                                                                   
480R1                                                                           
    nmattp=36                                                                   
400R1                                                                           
    nmattp=37                                                                   
1200R4                                                                          
    nmattp=38                                                                   
5R4 2 4R3 2 8R4 2 8R3 2 5R4 2 10R3 2 3R4 2 12R3 2 2R4 14R3 4 2 14R3 2 64R3 2    
14R3 2 4 14R3 2R4 2 12R3 2 3R4 2 10R3 2 5R4 2 8R3 2 8R4 2 4R3 2 5R4 9Q256       
    nmattp=39                                                                   
1200R4                                                                          
    nmattp=40                                                                   
400R1                                                                           
    nmattp=41                                                                   
480R1                                                                           
    nmattp=42                                                                   
1440R4                                                                          
    nmattp=43                                                                   
1200R4                                                                          
    nmattp=44                                                                   
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1440R4                                                                          
    nmattp=45                                                                   
480R1                                                                           
    nmattp=46                                                                   
160R1                                                                           
    nmattp=47                                                                   
480R1                                                                           
    nmattp=48                                                                   
400R1                                                                           
    nmattp=49                                                                   
480R1                                                                           
    nmattp=50                                                                   
160R1                                                                           
/  material distribution for zlev=  3                                           
/                                                                               
    nmattp=51                                                                   
64R1                                                                            
    nmattp=52                                                                   
192R1                                                                           
    nmattp=53                                                                   
160R1                                                                           
    nmattp=54                                                                   
192R1                                                                           
    nmattp=55                                                                   
64R1                                                                            
    nmattp=56                                                                   
192R1                                                                           
    nmattp=57                                                                   
576R4                                                                           
    nmattp=58                                                                   
480R4                                                                           
    nmattp=59                                                                   
576R4                                                                           
    nmattp=60                                                                   
192R1                                                                           
    nmattp=61                                                                   
160R1                                                                           
    nmattp=62                                                                   
480R4                                                                           
    nmattp=63                                                                   
1024R4                                                                          
    nmattp=64                                                                   
480R4                                                                           
    nmattp=65                                                                   
160R1                                                                           
    nmattp=66                                                                   
192R1                                                                           
    nmattp=67                                                                   
576R4                                                                           
    nmattp=68                                                                   
480R4                                                                           
    nmattp=69                                                                   
576R4                                                                           
    nmattp=70                                                                   
192R1                                                                           
    nmattp=71                                                                   
64R1                                                                            
    nmattp=72                                                                   
192R1                                                                           
    nmattp=73                                                                   
160R1                                                                           
    nmattp=74                                                                   
192R1                                                                           
    nmattp=75                                                                   
64R1                                                                            
/  material distribution for zlev=  4                                           
/                                                                               
    nmattp=76                                                                   
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64R1                                                                            
    nmattp=77                                                                   
192R1                                                                           
    nmattp=78                                                                   
160R1                                                                           
    nmattp=79                                                                   
192R1                                                                           
    nmattp=80                                                                   
64R1                                                                            
    nmattp=81                                                                   
192R1                                                                           
    nmattp=82                                                                   
576R1                                                                           
    nmattp=83                                                                   
480R1                                                                           
    nmattp=84                                                                   
576R1                                                                           
    nmattp=85                                                                   
192R1                                                                           
    nmattp=86                                                                   
160R1                                                                           
    nmattp=87                                                                   
480R1                                                                           
    nmattp=88                                                                   
1024R1                                                                          
    nmattp=89                                                                   
480R1                                                                           
    nmattp=90                                                                   
160R1                                                                           
    nmattp=91                                                                   
192R1                                                                           
    nmattp=92                                                                   
576R1                                                                           
    nmattp=93                                                                   
480R1                                                                           
    nmattp=94                                                                   
576R1                                                                           
    nmattp=95                                                                   
192R1                                                                           
    nmattp=96                                                                   
64R1                                                                            
    nmattp=97                                                                   
192R1                                                                           
    nmattp=98                                                                   
160R1                                                                           
    nmattp=99                                                                   
192R1                                                                           
    nmattp=100                                                                  
64R1                                                                            
flxini=37R0.00 1.0 62R0.00                                                      
mathmg=100R0    T                                                               
/                                                                               
/ ------------- BLOCK III (CROSS SECTIONS) -----------                          
/                                                                               
lib=file:cardd.xs                                                               
legord=1  legoxs=1                                                              
nxtyp=2                                                                         
ihm=93                                                                          
iht=3  ihs=4                                                                    
ihng=0                                                                          
chig=1.0000E+00 89R0.0000E+00 3Q90                                              
nxcmnt=2    T                                                                   
/                                                                               
/------------- BLOCK IV (CONTROL OPTIONS) --------------                        
/                                                                               
ncoupl=1                                                                        
nprtyp=1                                                                        
nrdblk=0                                                                        
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tolin=1.00E-03                                                                  
tolout=1.00E-05                                                                 
dtwmxw=0.95                                                                     
maxitr=50    10                                                                 
methit=1                                                                        
/                                                                               
/  Starting or selected differencing scheme,for each coarse-mesh, for z-level=  
/                                                                               
ndmeth=2 2 2 2 2                                                                
       2 2 2 2 2                                                                
       2 2 2 2 2                                                                
       2 2 2 2 2                                                                
       2 2 2 2 2                                                                
/                                                                               
/  Starting or selected differencing scheme,for each coarse-mesh, for z-level=  
/                                                                               
       2 2 2 2 2                                                                
       2 2 2 2 2                                                                
       2 2 2 2 2                                                                
       2 2 2 2 2                                                                
       2 2 2 2 2                                                                
/                                                                               
/  Starting or selected differencing scheme,for each coarse-mesh, for z-level=  
/                                                                               
       2 2 2 2 2                                                                
       2 2 2 2 2                                                                
       2 2 2 2 2                                                                
       2 2 2 2 2                                                                
       2 2 2 2 2                                                                
/                                                                               
/  Starting or selected differencing scheme,for each coarse-mesh, for z-level=  
/                                                                               
       2 2 2 2 2                                                                
       2 2 2 2 2                                                                
       2 2 2 2 2                                                                
       2 2 2 2 2                                                                
       2 2 2 2 2                                                                
nzonrb=100  0.999  1                                                            
methac=3      T                                                                 
/------------------BLOCK V(source)------------------                            
/                                                                               
nsdef=0                                                                         
nscmsh=38                                                                       
sref=3R0.000                                                                    
serg=1.276E+01 7.528E+00 4.898E+00 3.362E+00 2.402E+00 1.772E+00 1.344E+00      
1.043E+00 8.256E-01 6.647E-01 5.431E-01 4.495E-01 3.763E-01 3.183E-01           
2.716E-01 2.338E-01 2.027E-01 1.769E-01 1.555E-01 1.374E-01 1.220E-01           
1.089E-01 9.772E-02 8.802E-02 7.961E-02 7.228E-02 6.585E-02 6.020E-02           
5.519E-02 5.077E-02 4.683E-02 4.331E-02 4.016E-02 3.732E-02 3.477E-02           
3.247E-02 3.038E-02 2.848E-02 2.675E-02 2.518E-02 2.374E-02 2.242E-02           
2.120E-02 2.009E-02 1.906E-02 1.811E-02 1.702E-02 1.603E-02 1.345E-02           
1.134E-02 1.060E-02 9.572E-03 8.618E-03 8.056E-03 7.801E-03 7.441E-03           
7.103E-03 6.893E-03 6.596E-03 6.317E-03 6.142E-03 5.972E-03 5.663E-03           
5.373E-03 5.238E-03 4.985E-03 4.640E-03 4.431E-03 4.233E-03 3.944E-03           
3.764E-03 3.652E-03 3.545E-03 3.433E-03 3.331E-03 3.190E-03 3.075E-03           
2.989E-03 2.932E-03 3.061E-03 3.420E-03 3.699E-03 4.040E-03 5.392E-03           
6.845E-03 7.332E-03 1.009E-02 1.276E-02 1.559E-02 1.825E-02                     
smag=1.88000E+03                                                                
spacpf=1   -1        2560                                                       
6R0.00000E+00 4R5.31915E-04 10R0.00000E+00 8R5.31915E-04 7R0.00000E+00          
10R5.31915E-04 5R0.00000E+00 12R5.31915E-04 3R0.00000E+00 14R5.31915E-04        
2R0.00000E+00 14R5.31915E-04 0.00000E+00 64R5.31915E-04 0.00000E+00             
14R5.31915E-04 2R0.00000E+00 14R5.31915E-04 3R0.00000E+00 12R5.31915E-04        
5R0.00000E+00 10R5.31915E-04 7R0.00000E+00 8R5.31915E-04 10R0.00000E+00         
4R5.31915E-04 12R0.00000E+00 8Q256 4R5.31915E-04 10R0.00000E+00 8R5.31915E-04   
7R0.00000E+00 10R5.31915E-04 5R0.00000E+00 12R5.31915E-04 3R0.00000E+00         
14R5.31915E-04 2R0.00000E+00 14R5.31915E-04 0.00000E+00 64R5.31915E-04          
0.00000E+00 14R5.31915E-04 2R0.00000E+00 14R5.31915E-04 3R0.00000E+00           
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12R5.31915E-04 5R0.00000E+00 10R5.31915E-04 7R0.00000E+00 8R5.31915E-04         
10R0.00000E+00 4R5.31915E-04 6R0.00000E+00   T                                  
/                                                                               
/------------- BLOCK VI (BOUNDARY CONDITIONS) ---------                         
/                                                                               
/ var   type  Group albedos                                                     
ibback=0                                                                        
ibfrnt=0                                                                        
jbeast=0                                                                        
jbwest=0                                                                        
kbsout=0                                                                        
kbnort=0    T                                                                   
/                                                                               
/------------- BLOCK VII (PRINTING CONDITIONS) ---------                        
/                                                                               
/                                                                               
nxspr=0 nmatpr=1 ngeopr=1 nsrcpr=0 nsumpr=1                                     
meshpr=98I-1 -100                                                               
nfdump=1 nsdump=1 njdump=0 nadump=0   T                        
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PARALLEL LINUX EXECUTION SCRIPT FOR BASH 

Below is the PENTRAN parallel job script for execution on Linux clusters running a bash 
command shell. 
 
Example:  To run a problem called  fuelcask.f90 on 8 machines, the command line is: 
“ppen fuelcask f90 8”    (note the ‘.’ Between the prefix and suffix is not included). 
 

#!/bin/sh 
# 
# ppen parallel PENTRAN job script 
# 
# G. Sjoden, Sep 2001, June 2008 
# B. Dionne, June 2004 
# 
# syntax: 'ppen problemfile 3LtrSuffix #procs' 
#                   $1          $2       $3 
#                                                   
#    problemfile.3LtrSuffix contains PENTRAN deck 
#    #procs is the number of processors used 
# 
#    For Declaring Executable locations     
# --------------------------------------------------- 
# 
# 
     PENTRANcode=/home/sjoden/pentran/penmpf90                 
# 
# 
#    For Converting Files as needed             
# --------------------------------------------------- 
echo 
echo Running PARALLEL PENTRAN on $3 Processors ... 
echo $1 files converted to prb prefix scratch files in run ... 
echo 
#    lamclean -v     
     cp $1.$2 prb.pen 
     sleep 1 
#                                                      
#    Document MPI BUFFERING OPTIONS   
#---------------------------------------------------  
#    --Standard MPI 
     mpirun           -np  $3 $PENTRANcode 
# 
#    --Medium Buffer Client MPI           
#    obsolete: mpirun -c2c -nger -c  $3 $PENTRANcode 
#    mpirun -ssi rpi tcp -nger -c  $3 $PENTRANcode 
# 
#    --High Buffer MPI (slower but better buffering)  
#    mpirun -lamd -nger -c $3 $PENTRANcode   
# 
#    For Executing Code Sequences              
# --------------------------------------------------- 
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# 
#    mpirun           -np  $3 $PENTRANcode 
#    obsolete: mpirun -c2c -nger -c  $3 $PENTRANcode 
#    mpirun -ssi rpi tcp -nger -c  $3 $PENTRANcode 
#    mpirun -lamd -nger -c $3 $PENTRANcode   
echo 
echo PARALLEL PENTRAN Finished. 
#                                   
#    For Converting prb files back to $1 files 
# --------------------------------------------------- 
echo 
echo Removing Scratch files *.?at 
echo prb.pen ... 
echo 
     sleep 1 
     cp prb.pen $1.$2 
     rm *.?at prb.pen 
#    lamclean -v     
echo 
echo Cleaning Up Parallel Job files ... 
echo 
# 
# For Cleaning Up Processor : unique references 
# --------------------------------------------------- 
# 
proc=1 
while [ $proc -le $3 ] 
do 
# 
if [ -f ssnsrcp   ]; 
then 
  sed 's/prb/'$1'/g' ssnsrcp > ssnsrcpnew   
  mv ssnsrcpnew ssnsrcp  
fi 
# 
if [ -f prb.$proc ]; 
then 
  sed 's/prb/'$1'/g' prb.$proc > $1.$proc 
  rm prb.$proc 
fi 
# 
if [ -f prb.L$proc ]; 
then 
  sed 's/prb/'$1'/g' prb.L$proc > $1.L$proc 
  rm prb.L$proc 
fi 
# 
if [ -f prb.f$proc ]; 
then 
  mv prb.f$proc $1.f$proc 
fi 
# 
if [ -f prb.s$proc ]; 
then 
  mv prb.s$proc $1.s$proc 
fi 
# 
if [ -f prb.j$proc ]; 
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then 
  mv prb.j$proc $1.j$proc 
fi 
# 
if [ -f prb.a$proc ]; 
then 
  mv prb.a$proc $1.a$proc 
fi 
proc=`expr $proc + 1` 
done 
# 
if [ -f prb.M1 ]; 
then 
  mv prb.M1 $1.M1 
fi 
# 
if [ -f prb.K1 ]; 
then 
  sed 's/prb/'$1'/g' prb.K1 > $1.K1 
rm prb.K1 
fi 
# 
if [ -f prb.geo ]; 
then 
  sed 's/prb/'$1'/g' prb.geo > $1.geo 
rm prb.geo 
fi 
# --------------------------------------------------- 
# 
echo 
echo Job $1 Complete 
echo                           
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