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Why real time?

• For monitoring and in-situ detection, accurate solutions are needed 
in real-time.

• For design and analysis of nuclear systems, 1000’s of accurate 
simulations are needed in real time. This is especially important for 
the design of advanced nuclear system

• Image reconstruction for medical application can benefit from real-
time simulations; this can lead to an improved image quality, better 
diagnosis, and reduced radioactivity!  



Particle Transport
• Determine the expected number of particles in a phase 

space  (𝒅𝟑𝒓𝒅𝑬𝒅𝛀) at time t:

• There are several physical quantities (e.g., flux, current and reaction 
rate) are defined based on the number density. 
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Particle Transport Simulation

• Deterministic Methods
• Using the Boltzmann equation and its approximations

• Statistical Monte Carlo Methods
• Simulate particle transport on a computer using random numbers to sample 

from probability density functions associated with physical events



Deterministic - Linear Boltzmann Equation (LBE) for neutral particle transport
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LBE Numerical Formulations
• Over the past 60 years, various numerical formulations have been derived for LBE. 

Table below provides an overview of more popular techniques used for handling 
different variables

Variable LBE form Methods Comments

Angle Integro-diff
&
Integral

Expansion of angular-dependent 
functions in terms of 𝑃ℓ 𝜇 &
𝑌ℓ,𝑚(μ, 𝜑)

Solves for moments of angular fluxes

Discrete ordinates (Sn) LBE is solved for discrete ordinates; ordinates 
and associated weights to be determined

Space Integro-diff Finite volume, Finite element, nodal LBE solved for average angular flux over mesh 
volumes; Differencing schemes (fitting 
functions) are needed

Integral Method of Characteristics (MOC) LBE solved along characteristic rays

Energy Integro-diff 
& integral

Multigroup Flux weighted; flux & importance weighted; 
CPXSD methodology



Discrete Ordinates

• LBE is written for a discrete set of angles with associated weights, Ω𝑛, 𝑤𝑛 , 

 Ω𝑛 ∙ 𝛻Ψ  𝑟, 𝐸,  Ω𝑛 + 𝜎𝑡( 𝑟, 𝐸) Ψ  𝑟, 𝐸,  Ω𝑛 = 𝑞  𝑟, 𝐸,  Ω𝑛 , for 𝑛 = 1, 𝑁(𝑁 + 2)

• Directions 
• generated by considering 𝟗𝟎° rotational invariance, e.g., 𝜇𝑖 = 𝜂𝑖 = 𝜉𝑖 , 𝑖 = 1, 𝑁; 

leading to 
𝑁(𝑁+2)

8
directions per octant

• Their weights are obtained by preserving the moments of direction cosines, e.g., 

 
−1

1
𝑑𝑢𝜇𝑚 =

2

𝑚+1
, 𝑜𝑟  𝑛=1

𝑁(𝑁+2)
𝑤𝑛𝜇𝑛

𝑚 =
2

𝑚+1
,        for even m’s

S20

NOTE: Typical quadrature order: for reactor shielding is S8 (80 directions) or above, and for medical 
application S24 (624 directions) or above



Multigroup LBE
• Integrate the LBE over energy groups 
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Spatial Finite-volume Technique

• The LBE is integrated over discretized volumes, e.g., collision term in a 
Cartesian geometry reduces to:

 𝜓𝑛,𝑔,𝑖𝑗𝑘 =
 ∆𝑉𝑖𝑗𝑘

𝑑3𝑟𝜓𝑛,𝑔  𝑟

∆𝑥𝑖∆𝑦𝑗∆𝑧𝑘

Hence, the 3-D multigroup, finite-volume, Sn equations are given by

𝜇𝑛

∆𝑥𝑖
𝜓𝑛,𝑔

𝑂𝑢𝑡 − 𝜓𝑛,𝑔
𝑖𝑛 +

𝜂𝑛

∆𝑦𝑗
𝜓𝑛,𝑔

𝐿 − 𝜓𝑛,𝑔
𝑅 +

𝜉𝑛
∆𝑧𝑘

𝜓𝑛,𝑔
𝑇 − 𝜓𝑛,𝑔

𝐵 + 𝜎𝑡,𝑔𝜓𝑛,𝑔
𝐴 = 𝑞𝑛,𝑔

𝐴

 
∆𝑉𝑖𝑗𝑘

𝑑3𝑟𝜎𝑡,𝑔  𝑟 𝜓𝑛,𝑔  𝑟 = 𝜎𝑡,𝑔,𝑖𝑗𝑘
 𝜓𝑛,𝑔,𝑖𝑗𝑘∆𝑥𝑖∆𝑦𝑗∆𝑧𝑘

• There are 7 unknowns and only one equation, there 3 BC’s, and 3 auxiliary equations are 
needed to express the relation between the boundaries and cell-average angular fluxes 
along x, y, or z axes. 



Auxiliary Equations - Differencing Schemes

• A “differencing scheme” refers spatial distribution of the angular flux 
(along x, y, or z) within a mesh cell, e.g., along x axis

𝜓𝑛,𝑔
𝐴

• Desired characteristics of a differencing scheme
Accurate
Positive 
No unphysical oscillations
Cheap (time & memory)

𝜓𝑛,𝑔
𝑂𝑢𝑡

𝜓𝑛,𝑔
𝑖𝑛

𝑥



Examples for Differencing schemes (linear fit)

x-axis 𝜓𝑛,𝑔,𝑖𝑗𝑘 = 𝑎𝑛,𝑔,𝑖𝑗𝑘𝜓𝑛,𝑔,𝑖−
1

2
,𝑗,𝑘

+ (1 − 𝑎𝑛,𝑔,𝑖𝑗𝑘)𝜓𝑛,𝑔,𝑖+
1

2
,𝑗,𝑘

y-axis 𝜓𝑛,𝑔,𝑖𝑗𝑘 = 𝑏𝑛,𝑔,𝑖𝑗𝑘𝜓𝑛,𝑔,𝑖,𝑗−
1

2
,𝑘

+ (1 − 𝑏𝑛,𝑔,𝑖𝑗𝑘)𝜓𝑛,𝑔,𝑖,𝑗+
1

2
,𝑘

z-axis 𝜓𝑛,𝑔,𝑖𝑗𝑘 = 𝑐𝑛,𝑔,𝑖𝑗𝑘𝜓𝑛,𝑔,𝑖,𝑗,𝑘−
1

2

+ (1 − 𝑐𝑛,𝑔,𝑖𝑗𝑘)𝜓𝑛,𝑔,𝑖,𝑗,𝑘+
1

2

Linear Diamond (LD)

Directional 𝜽 − 𝒘𝒆𝒊𝒈𝒉𝒕𝒆𝒅 𝑫𝑻𝑾 (e.g., for a coefficient along x; b & C coefficients have similar formulations)
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Examples for Differencing schemes (Exponential fit)
(Predicted – Corrected scheme)

𝜓𝑛,𝑔 𝑥, 𝑦, 𝑧 = 𝑎0𝑒
𝜆𝑖𝑃1(𝑥)

𝜇𝑛 𝑒
𝜆𝑗𝑃1(𝑦)

𝜂𝑛 𝑒
𝜆𝑘𝑃1(𝑧)

𝜉𝑛

Where, 

𝑃1 𝑢 =
2𝑢

Δ𝑢
− 1, 𝑓𝑜𝑟 0 ≤ 𝑢 ≤ ∆𝑢, u ≡ 𝑥, 𝑦, 𝑜𝑟 𝑧

Exponential Directional Weighted (EDW)
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Hybrid Differencing 
Adaptive Differencing Strategy (ADS)

This strategy allows for the use of 

different differencing schemes in 

different regions depending on problem 

physics and meshing

LD  DTW   EDW (or EDI)

Implemented in PENTRAN



Discretized LBE

• Requires large memory, e.g., 
• Considering: 80 𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠, 50 𝑔𝑟𝑜𝑢𝑝𝑠, 𝑎𝑛𝑑 100 ∗ 100 ∗ 100 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑚𝑒𝑠ℎ𝑒𝑠,

• There are 4𝑥109 unknowns and therefore 16 GB of memory is needed to save 
only the angular flux distribution

• Therefore, 
Parallel algorithms are needed for Memory partitioning and multitasking 



Developed PENTRANTM (Parallel Environment Neutral-particle TRANsport)
(G. Sjoden & A. Haghighat, 1996)

Solves the integro-differential LBE

 ANSI FORTRAN F77/f90 with MPI library, over 33,000 lines 
 Industry standard FIDO input

Solves 3-D Cartesian, multigroup, anisotropic transport problems 
 Forward and adjoint mode
 Fixed source, criticality eigenvalue problems

Parallel processing algorithms (using the MPI libraries)
 Full phase-space decomposition: Parallel in angle, energy, and spatial variables
 Parallel I/O, Partitioned memory

Unique numerical formulations: 

 Sn method with different angular quadrature sets 
 Finite volume with the Adaptive Differencing Strategy 
 Different iteration schemes
 Different acceleration schemes



Application of PENTRANTM

Kobayashi 3-D Benchmarks
VENUS-3 Benchmark facility
BWR Core-Shroud
Pulsed Gamma Neutron Activation Analysis 
(PGNAA) device
X-Ray room
Time-of-Flight (TOF)
Spent fuel storage cask
C5G7 MOX Criticality Benchmark
UFTR Water tank Characterization
SNM Detection
PENBURN application
PENTRAN-MP application 
PENTRAN-CRT application

NOTE
• Has benchmarked the performance 

and accuracy of PENTRAN>

• Achieved accurate solutions for 
complex large problems, but require 
significant number of computer cores 
(100’s or 1000’s) and computer time 
(hours and days)

• Additionally, discretization may lead 
to inaccuracy of the models



Spent Fuel Storage Cask Dimensions

• Height ~ 610 cm

• Shell O.D. ~340 cm

• Shell I.D. ~187 cm

• Empty Weight 

269,000 lbs

(55.3 MT)

• Max. Loaded Weight 

358,000 lbs

(162.4 MT)

‘Large’ Model

CASK library 
(22n, 18g)

17 Materials

318,426 fine 
meshes
(1000 coarse 
meshes) (40 z-
levels)

P3, S12 (168 
directions)

1.48 GB per 
processor; 8 
processors (~12 GB 
Total)



Accuracy and Performance of PENTRAN

Reference Monte Carlo 
(Multigroup)

𝑷𝑬𝑵𝑻𝑹𝑨𝑵

𝑹𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆

1.25E-04 (1.30%)
1.50E-04 (1.18%)
1.39E-04 (1.23%)
1.00E-04 (1.46%)

1.04
1.04
1.04
1.04

Model # 
CPU FOM

Run Time 
(hrs)

Values/
Hour Speedup

Unbiased MCNP
Multigroup*

8 0.46 362 19 -

PENTRAN
‘Large’ Model

8 165 42,100 2.2

Type equation here.



Developed the TITAN hybrid Code system for coupling different forms of LBE 
(C. Yi & A. Haghighat, 2005)

• Hybrid deterministic-deterministic: Allows for the use of different forms of LBE to 

be used in different coarse meshes of a problem

• Currently, it includes Sn, Method of Characteristics (MOC) & Ray-tracing with 

Fictitious quadrature set (RTF)

TITAN

Ray-tracing with Fictitious  (RTF) 
Quadrature

SN

Method of Characteristics 
(MOC)

Air-like medium

Low-scattering medium
High scattering



TITAN Sn-MOC Algorithm

Sn Block-oriented MOC
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TITAN Benchmarking and Application
• OECD/NEA Benchmarks

• C5G7 MOX

• Kobayashi

• 3-D parameter space

• VENUS-2 

• Applications
• Adjoint calculation for the AIMS active interrogation simulation tool

• mPower reactor core and external modeling

• Modeling of a penetration duct in a nuclear reactor

• Benchmarking the multigroup SDM (subgroup decomposition method) 
algorithm (developed by Georgia Tech)

• Medical applications (e.g., CT and SPECT)



Monte Carlo Method
• Monte Carlo method can be considered as a method for performing a particle 

transport experiment on a computer.

• By relating the random variables associated with an event to random numbers (𝜉), 
random sampling is performed, e.g., for simplified particle transport, there 3 events:

absorbed



t

r





ln
t

s




 120  

Tally (count)

1) Path-length 2) Type of 
interaction,

3) Scattering angle 
(isotropic scattering)

S (r, E, Ω) 
Sample

 𝐶 ± 𝑆  𝑐

and

𝑅  𝑐 =
𝑆  𝑐

 𝐶
=

𝑆𝑐

 𝐶 𝑁

Significant CPU is needed to 
achieve a statistically 
reliable results



Remarks - Monte Carlo methods
 In a Monte Carlo simulation, there is no need for discretization of angle, 

space , and energy

 To estimate a reliable count, it is necessary to discretize the independent 
variables

 To estimate a statistically reliable count, significant number of particle 
histories have to be simulated

 Since particle histories are independent, parallel computing can be very 
effective

 But, to achieve detail solutions, it is necessary to employ effective and 
automated variance reduction (VR) techniques

 To devise an effective VR, it is necessary to determine the detector 
importance function that provides information on the importance of a 
particle to a response/objective.

 The importance function can be obtained form the equation of balance 
of importance of a neutron:

Electron transport from a linear 
accelerator to a patient skin; 
ADIES code used

With VR



Importance Equation
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Where,

Equation of balance of Importance of a particle to detector with cross-section 
(𝜎𝑑) is given below:

V

Vd

By forming a commutation relation between the “forward” and 
importance equations with a vacuum boundary condition, the 
detector response is expressed by

𝑅 =< 𝜓∗𝑞 >

q

Particle Importance

𝐻∗𝜓∗ = 𝜎𝑑

a sample importance function 
distribution (𝜓∗) around a detector

NOTE: 
• Above equation indicates at that 𝜓∗𝑞 represent the contribution 

of a source within a phase space to the detector; 
• Why not use the importance function in the Monte Carlo VR?



We developed the CADIS (consistent Adjoint Driven Importance Sampling) methodology :

CADIS uses a 3-D SN importance function distribution for

• Source biasing

• Transport biasing with splitting/rouletting rechnique

• consistent manner, within the weight-window technique .

The CADIS methodology was implemented into MCNP, to develop A3MCNP (Automated Adjoint Accelerated 
MCNP) code system

Hybrid Method - CADIS Methodology & A3MCNP             
(J . Wagner & A. Haghighat, 1997)

 𝑞 𝑝 = 𝜓∗ 𝑝 𝑞 𝑝
𝑅

𝑤 𝑝 = 𝑤(𝑝′)
𝜓∗(𝑝′)

𝜓∗(𝑝)
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Application of  A3MCNP

•PWR Cavity dosimetry

For determination of neutron interaction 
rates with dosimetry materials placed at the 
reactor cavity, and estimation of fluence at 
the reactor pressure vessel

•BWR Core Shroud

Determination of neutron and gamma fields 
at the reactor pressure vessel

•Storage cask

Determination of neutron and gamma fields 
at the cask’s outside surface

Significant speedups are 
obtained for obtaining 
highly reliable counts at a 
few regions, e.g.,

Problem Speedup

PWR cavity 
dosimetry

50000

BWR core 
shroud

2000

Cask surface 
dose

140



My Journey - Particle Transport Algorithms Development 
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How about real time? 

Year Methodology Computer Code Wall-clock Time Former & Current 
Students 

2018 MRT tRAPID  
 
Smart phone 
 
1 Core 

V. Mascolino 

2018 MRT bRAPID Dr. N. Roskoff 

2017 VRS for RAPID VRS-RAPID V. Mascolino 

2016 MRT RAPID Drs. Walters & Roskoff 

2015 MRT TITAN-IR Dr. K. Royston 

2013 MRT AIMS Drs. Royston &Walters 

2009 MRT INSPCT-S Dr. W. Walters 

2007 Hybrid MC-Dtrm (electon) ADIES  
 

100’s 
1000’s 
Cores 

Dr. B. Dionne 

2005 Hybrid Dtrm-Dtrm TITAN Drs. C. Yi & Walters 

1997 Hybrid MC-Dtrm A3MCNP Drs J. Wagner &  
Shedlock 

1996 3-D  Parallel PENTRAN Drs. Sjoden & 
Kucukboyaci 

1992 2-D Vector & Parallel Dtrm   Drs. M. Hunter,  
R. Mattis & B. Petrovic 

1989 1-D Parallel Dtrm                   A few cores  

1986 1-D vector Dtrm    

 

How about Real Time? 



New Paradigm – Multi-stage, Response-function Transport (MRT) 
Methodology

(A. Haghighat, K. Royston & W. Walters, 20014)

• Based on problem physics partition a problem into stages (sub-problems), 

• For each stage employ response method and/or adjoint function 
methodology

• Pre-calculate response-function or adjoint-function using an accurate and 
fast transport code

• Solve a linear system of equations to couple all the stages in real-time

*Haghighat, A., K. Royston, and W. Walters, “MRT Methodologies for Real-Time Simulation of Nonproliferation and Safeguards Problems,” Annals of Nuclear Energy, pp. 61-
67, 2015.



Application of the MRT Methodology

• Nondestructive testing: Optimization of the Westinghouse’s PGNNA active interrogation system for detection of RCRA 
(Resource Conversation and Recovery Act) (e.g., lead, mercury, cadmium) in waste drums (partial implementation of MRT; 
1999)1

• Nuclear Safeguards: Monitoring of spent fuel pools for detection of fuel diversion (funded by LLNL); Developed INSPCT-s 
code system (2007)2

• Nuclear nonproliferation: Active interrogation of cargo containers for simulation of special nuclear materials (SNMs) 
(2013) (in collaboration with GaTech); developed the AIMS (Active Interrogation for Monitoring Special-nuclear-materials) 
code system (2013)3,4

• Image reconstruction for SPECT (Single Photon Emission Computed Tomography): Real-time simulation of an SPECT 
device for generation of project images using an MRT methodology and Maximum Likelihood Estimation Maximization 
(MLEM); Developed the TITAN-IR code system (filed for a patent, June 2015)5,6



SPECT
• Functional imaging modality

Issue
• Limited image quality and spatial resolution

Goal
• Improving the image quality 
• Reducing radioactive uptake

MRT - Simulation of SPECT (Single Photon Emission Computed Tomography ) & 
Development of an Image Reconstruction Algorithm

Inject a
radioactive  
material

A projection angle

Typical dimensions include
• Hole diameter ~0.18 cm
• Septa thickness ~0.02 cm
• Length ~3.3 cm
• Acceptance Angle ~1.6°



Hybrid formulation for SPECT simulation

Detector: (Not 
simulated, use 
response function 
in the future)

 Used the hybrid Sn and RTF formulation

RTF

SN
Phantom

Stage 1 (simulated once)

Stage 2 – Identify the intersection of rays emanating 
from the collimators with the phantom surface 

Stage 3: determination of count of 
sources that reach the detector 

In Stage 4, using ML-EM, one can 
obtain a new source
T



Benchmarking TITAN SPECT Projection Images

Comparison with the SIMIND reference 
code system using
NURBS-based cardiac-torso (NCAT) phantom with Tc-99m (140 keV)

Anterior Left lateral Posterior Right lateral

Anterior Left later                Posterior Right lateral

SIMIND generated projection images

TITAN generated projection images

Sagittal slice of 
NCAT phantom

32



TITAN SPECT Simulation Parallel Performance

Royston et al., Progress in Nuclear Science and Technology, 2, 2011

Number of 
Processors

Number of 
projection 

images

Total time with serial 
projection images 

(sec)

Total time with parallel 
projection images 

(sec)

16 1 28.5 29.0

16 90 183.1 38.1

16 180 340.9 49.3



Iterative Deterministic Image-Reconstruction for SPECT (DRS)

• Projection data calculated by deterministic transport 
code

• Particle transport fully modeled in patient for forward 
projection

• Detailed system matrix never needs to be created

• Backprojection uses simple system matrix 

• A script was developed to allow anyone to use this 
method with any code that creates projection data for a 
given source distribution

• Implemented into the TITAN-IR

Particle transport 
in patient

ML-EM 
algorithm

Reconstructed 
image

U
p

d
at

e 
im

ag
e 

es
ti

m
at

e

Calculate 
projection data

Are 
tolerances 

met?

Initialize problem

Yes

No

l̂b
(i+1) = l̂b

(i)

pb,d
d=1

D

å

nd
*

n̂d
(i) pb,d,  b =1,… ,B

d=1

D
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Example - TITAN-IR with Fast Back Projection & Iterative ML-EM

Algorithm
Noiseless, no 

collimator blur
Noisy, with blur 

(SE-LEHR)

FBP

ML-EM 
with SM 

only

TITAN-IR

Jaszczak Cold Sphere 
Phantom



RAPID Formulation

• It is based on the MRT approach

• Based on the problem physics and objective, i.e., RAPID writes the LBE 
differently for eigenvalue, subcritical, fixed-source problems, and detector 
response using response matrix/coefficient/function formulations

• RAPID pre-calculates these response matrix/coefficient/functions by 
performing detailed continuous energy Monte Carlo simulation (using MCNP 
or Serpent):

• For pre-calculation, RAPID uses the pRAPID module using a multi-layer approach (Filed 
for patent, application no. US 62/582,709 )

• RAPID solves the transport problem in real time using a linear system of 
equation



• LBE formulation in operator form is expressed by

𝐻𝜓(  𝑝) =
1

𝑘
𝐹𝜓(  𝑝)

Where,  𝑝 =  𝑟, 𝐸,  Ω \

𝐻 =  Ω ∙ 𝛻 + σ𝑡  𝑟, 𝐸 −  
0

∞

𝑑𝐸′  

4𝜋

𝑑Ω′ σ𝑠  𝑟, 𝐸′ → E, 𝜇0 ; 𝐹 =
𝜒(𝐸)

4𝜋
 
0

∞

𝑑𝐸′  

4𝜋

𝑑Ω′ ν𝜎𝑓(  𝑟, 𝐸′)

𝜓(  𝑝) =
1

𝑘
𝐻−1𝐹𝜓(  𝑝)

𝜓(  𝑝) =
1

𝑘
𝐻−1𝜒  𝐹𝜓(  𝑝)

Where,  𝐹 =
1

4𝜋
 
0

∞
𝑑𝐸

′  
4𝜋 𝑑Ω′ ν𝜎𝑓(  𝑟, 𝐸

′
), then multiply by  𝐹 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟

 𝐹𝜓(  𝑝) =
1

𝑘
 𝐹𝐻−1𝜒  𝐹𝜓(  𝑝)

𝑆  𝑝 =
1

𝑘
𝐴𝑆  𝑝

Where,   

𝑆 =  𝐹𝜓 ,     𝐴 =  𝐹𝐻−1𝜒,   &     𝐹 =
1

4𝜋
 0

∞
𝑑𝐸′  4𝜋

𝑑Ω′ ν𝜎𝑓(  𝑟, 𝐸′)

Eigenvalue Monte Carlo – Based on the Fission Matrix (FM)



• Eigenvalue formulation

𝐹𝑖 =
1

𝑘
 𝑗=1

𝑁 𝑎𝑖,𝑗𝐹𝑗

• k is eigenvalue

• 𝐹𝑗 is fission source, 𝑆𝑗 is fixed source in cell j

• 𝑎𝑖,𝑗 is the number of fission neutrons produced in cell 𝑖 due to a fission neutron born in cell 𝑗. 

• 𝑎𝑖,𝑗’s are pre-calculated by a series of fixed-source transport (e.g., Monte Carlo) calculations

• Above equation is solved iteratively in a very short time

• NOTE: the coefficient matrix is highly sparse and there is geometric similarity and symmetry 
(filed for a patent, no. US 62/582,709)

Discretized FM formulation



• Novel Detector Response Function (DRF) 
Methodology

Response at detector 𝑖 is calculated by

𝑅𝑖 =  

𝑗

𝛼𝑖𝑗𝐹𝑗 +𝛽𝑖𝑗𝑆𝑗

Where, 𝐹𝑗and 𝑆𝑗 refer to fission and independent sources, 

respectively, and 𝛼𝑖𝑗and 𝛽𝑖𝑗refer to DRF coefficients that have 

to pre-calculated , 

𝛼𝑖𝑗 =
 𝑉𝑖𝜖𝑉𝑑

 𝑔 𝑉𝑖𝜎𝑖,𝑔𝜙𝑖,𝑔

 𝑉𝑗𝜖𝑉𝑓𝑖𝑠
 𝑔 𝑉𝑗𝑆𝑖,𝑔

𝑓𝑖𝑠

𝛽𝑖𝑗 =
 𝑉𝑖𝜖𝑉𝑑

 𝑔 𝑉𝑖𝜎𝑖,𝑔𝜙𝑖,𝑔

 𝑉𝑗𝜖𝑉𝑓𝑖𝑠
 𝑔𝑉𝑗𝑆𝑖,𝑔

𝑖𝑛𝑑𝑝

Detector Response Function (DRF)

𝑅𝑖

• Standard detector 
response  formulation

𝑅𝑖 =  
𝑗

 

𝑔

𝜎𝑗,𝑔𝜙𝑗,𝑔 𝑉𝑗

Where 𝜙𝑖,𝑔 is obtained from by 

first LBE solved for flux in the cask

𝐻𝜓𝐶 = 𝐹𝜓𝐶 + S

Then, sum of fission source & 
independent source is used to 
solve for flux using

𝐻𝜓 = 𝑆𝑓 + 𝑆



bRAPID - Time-dependent (Fuel Burnup) Standard Method
1. Calculate Macroscopic Cross Sections:  

2. Transport Calculation: solve for multi-group, 
scalar flux for each mesh cell k

3. Calculate One-group Cross-sections & Fluxes:

4. Solve Depletion Equations: for each burnable 
region k, update number densities

5. Repeat Steps 1-4 for all Burnup Steps

1. Pre-calculation: to obtain FM coefficients and irradiated fuel 
properties (one time)

2. Define Burnup Fission Matrix: via interpolation of database FM 
coefficients 

3. Solve FM Eigenvalue Equations: for fission source distribution

3. Calculate Next-step Power Density Distribution: per burnable 
region i (assembly-wise, axially-dependent)

4. Calculate Next-step Time: 
5. Calculate Irradiated Fuel Properties: 
6. Repeat Steps 2-5 for Each Burnup Step

Run pRAPID

𝐹𝑖
𝑛 Fission Source for step n

𝑘 Eigenvalue

Interpolate from database

𝑝𝑛+1 Assembly-wise, axially-dependent power density at step n+1

 𝑃𝑛+1 Average power density (user input)

𝑁𝑏 Number of burnable regions
𝑓𝑖

𝑛 Normalized Fission Source



• Time-dependent flux equation (no external source):

1

𝑣
⋅
𝜕𝜓  𝑝, 𝑡

𝜕𝑡
+ 𝜎𝑡  𝑝, 𝑡 𝜓  𝑝, 𝑡 +  Ω ⋅ 𝛻𝜓  𝑝, 𝑡 −  𝑑𝑝′𝜎𝑠  𝑝′ →  𝑝 𝜓  𝑝′, 𝑡 =

1 − 𝛽
𝜒𝑝 𝐸

4𝜋
 𝑑𝑝′𝜈𝜎𝑓  𝑝′, 𝑡 𝜓  𝑝′, 𝑡 +  

𝑓=1

𝑁𝑓
𝜒𝑑,𝑓 𝐸

4𝜋
𝜆𝑑𝐶𝑑( 𝑟, 𝑡)

• Time-dependent DNP concentration equation for family 𝑓:

𝑑𝐶𝑑,𝑓  𝑟, 𝑡

𝑑𝑡
= −𝜆𝑑,𝑓𝐶𝑑,𝑓  𝑟, 𝑡 + 𝛽𝑓 𝑑𝑝 𝜈𝜎𝑓  𝑝′, 𝑡 𝜓(  𝑝′, 𝑡)

Standard Kinetic Transport Equations



• We define 4 fission matrices, based on the type of the neutron that induces 
fission and of the one generated by fission:

 𝑮𝒑𝒑, is the fission matrix for prompt neutrons generated by a fission induced by a 
prompt neutron

 𝑮𝒑𝒅, is the fission matrix for delayed neutrons generated by a fission induced by a 
prompt neutron

 𝑮𝒅𝒑, is the fission matrix for prompt neutrons generated by a fission induced by a 
delayed neutron

 𝑮𝒅𝒅, is the fission matrix for delayed neutrons generated by a fission induced by a 
delayed neutron

tRAPID Time-dependent (Kinetics)
The TFM (Transient FM) matrices



• Similar to the steady-state FM, the TFM equations are obtained by 
recasting the transport equation into matrix form.

• The TFM equations (with 1 delayed neutron family), at time 𝑡𝑘, take the 
following form:

𝑺𝒑
(𝒌)

=  

𝑘′=0

𝑘

 𝐺(𝑘−𝑘′)
𝑝𝑝 ⋅ 𝑺𝒑

(𝒌′)
+  

𝑘′=0

𝑘

 𝐺(𝑘−𝑘′)
𝑑𝑝 ⋅ 𝜆𝑑𝑪𝒅

(𝒌′)

𝑑𝑪𝒅

𝑑𝑡

𝒌

= −𝜆𝑑𝑪𝒅
𝒌 +  

𝑘′=0

𝑘

 𝐺(𝑘−𝑘′)
𝑝𝑑 ⋅ 𝑺𝒑

𝒌′

+  

𝑘′=0

𝑘

 𝐺(𝑘−𝑘′)
𝑝𝑑 ⋅ 𝜆𝑑𝑪𝒅

𝒌′

tRAPID Formulation

DNP decay term
Time integral of 

DNP generated by 
prompt neutrons

Time integral of 
DNP generated by 
delayed neutrons

Time integral of 
prompt neutrons 

generated by 
delayed neutrons

Time integral of 
prompt neutrons 

generated by 
prompt neutrons



Web Application



• RAPID is incorporated into a Web application, referred to as 
the Virtual Reality System (VRS) for RAPID*. 

• VRS-RAPID provides a collaborative Virtual Reality 
environment for a user to build models, perform simulation, 
and view 3-D diagrams in an interactive mode. 

• 3-D diagrams can be projected onto a virtual system 
environment (e.g., a pool) for further analysis and training 
purposes. 

• Additionally, VRS-RAPID outputs can be coupled with an 
immersive facility such as the VT’s HyberCube System, as 
shown in this figure.

Web Application

*Filed a disclosure application to the VT-IP Office, March 2, 2018



RAPID Benchmarking studies
Performed numerous computational benchmark and two experimental benchmark 
as follows:

Spent fuel pool Different arrays from 2x2 to 9x9, assemblies of different burnups and cooling times, with 
axially-dependent burnups

US Naval Academy 
subcritical reactor

Performed measurements both inside and outside the reactor, and performed detailed 
computational analyses

Spent fuel cask GBC-32 benchmark & its variations (assemblies of different burnups & cooling times, with axial 
burnup distribution

Reactor core Several large PWR problems, based on the NEA/OECD Monte Carlo Performance Benchmark 
Problem (considering different enrichment, different axial moderator temperature)

Detector Response for spent 
fuel pool/cask

Inspection of a pool (placement of a detector on top of the fuel)
Inspection of a cask (placement of a detector on the surface of a cask)

3-D burnup for RAPID 
(bRAPID)

A smaller size (5x5) version of the OECD/NEA Monte Carlo Performance Benchmark; various 
combinations of specific power and irradiation times are studied

Time-dependent RAPID 
(tRAPID)

Performed detailed analyses using the Flattop experimental facility



• Geometry
• 32 Fuel assemblies
• Stainless steel (SS304) cylindrical canister
• Inter-assembly Boral absorber panels
• Height of the canister: 470.76 cm

• Fuel assembly
• 17x17 Optimized Fuel Assembly (OFA)
• 25 instrumentation guides
• Fresh UO2 4% wt. enriched fuel pins
• Active height: 365.76 cm 

• Benchmarked against the MCNP & Serpent code 
systems

• Pre-calculations
• Similar to the Pool calculations, except for a 17x17 

array of pins, i.e., requiring 819 calculations, each 20 
min in parallel (with 56 cores, about 5 hours)

Spent fuel cask
GBC-32 Cask Computational Benchmark 



Case MCNP RAPID

𝒌𝒆𝒇𝒇 1.14545 (± 1 pcm) 1.14590

Relative Difference - 39 pcm

Fission density rel. uncertainty 1.15% -

Fission density relative diff. - 1.56%

Computer 16 cores 1 core

Time
13,767 min
(9.5 days)

0.585 min
(35 seconds)

Speedup - 23,533

#assemblies = 32; # pins = 264; #axial levels = 24; # tallies = 202,752

RAPID vs. MCNP – FULL Cask model



With a quarter Blanked 

Inside 
view

Calculated Axially-Dependent, Pin-wise Fission Density in 
the GBC-32 Benchmark Using RAPID  



*W. Walters, N. Roskoff, and A. Haghighat, ”The RAPID Fission Matrix Approach to Reactor Core Criticality Calculations,” Accepted 
for publication in the Journal Nuclear Science and Engineering (June, 2018)

• RAPID has been applied to several large PWR 
problems, based on the NEA/OECD Monte Carlo 
Performance Benchmark Problem.

• 241 assemblies; 17x17 lattice; 264 fuel pins + 25 
control/instrumentation tubes per assembly; 24 GWd/MT+ 
chemical shim

• 100 axial levels

• 6.4 million cells

• FM coefficients are pre-calculated using the SERPENT 
Monte Carlo code for different core configurations

Reactor Core - RAPID vs. SERPENT – PWR*

RPV

Downcomer

Baffle plates & 
core barrel 
mixture



Method Keff Relative Diff

Serpent 1.000855 ±1.0 𝑝𝑐𝑚 -

RAPID 1.000912 ±1.4 𝑝𝑐𝑚 5.3 pcm

Method # Cores CPU (hrs) Speedup

Serpent 20 1000 -

RAPID* 1 0.23 4348

*Pre-calculation requires about 700 CPU hrs

Sample Result
RAPID vs. SERPENT – Keff & Compuation Time



Pin-wise Fission Source 

X-Y reactor core layout.

RAPID-Serpent Difference

Axial Fission densityFission density along single pins

Type Serpent RAPID

RMS 2.03% 0.21%

Max 10.16%* 3.64%

*has not converged!

Pin-wise fission source

1-σ Uncertainty

RMS error  : 2.18%

Sample Result
RAPID vs. SERPENT –Fission Density



• 5x5 Mini Core w/ 4 axial zones
• 84 burnable regions

• Burn this model with:
• Power density = 25 kW/kg
• Irradiation Time = 1 year (10 steps)
• Total Burnup = 9,131 MWd/MTHM

A version of OECD/NEA Monte Carlo Performance Benchmark 
with 25 Assemblies, 17x17 fuel lattice
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Comparison of RAPID and Serpent fuel burnup 
calculational results

54

Method
No. 

Proc.
Time Speedup

Serpent 32 4.3 d --

bRAPID 1 21 min 294

U-235

Pu239

Eigenvalue

Time & Computers

Fission neutron variations Axial fuel isotopic burnup



• NEA/OECD Criticality Benchmark: PU-MET-FAST-006

• Plutonium sphere surrounded by natural uranium 
reflector

• Fast reflected critical reactor

The ”Flattop” criticality benchmark

55

Pu

Nat-U

9.0664 cm

48.2840 cm

Case 𝒌𝒆𝒇𝒇 𝜷𝒆𝒇𝒇 𝒍𝒆𝒇𝒇 𝚲𝒆𝒇𝒇 𝜶𝑹𝒐𝒔𝒔𝒊

tRAPID 0.99907 ± 5 𝑝𝑐𝑚 0.00278 13.18 𝑛𝑠 13.23 𝑛𝑠 −0.210 𝜇𝑠−1

Experiment 1.0000 ± 300𝑝𝑐𝑚 / / / −0.214 𝜇𝑠−1

Relative Difference −93 𝑝𝑐𝑚 / / / 1.9%

Comparison of k-effective and 𝜶𝑹𝒐𝒔𝒔𝒊 (RAPID vs. Experiment)



Jozef Stefan Institute’s TRIGA

Model # Computer
Cores

Wall-clock
time (s)

Speedup

Serpent 32 12730 -

RAPID 1 6 2120

Model
𝒌𝒆𝒇𝒇 Rel. Diff. (pcm)

Reference
(Experimental)

1.00460 (560 𝑝𝑐𝑚) -

Serpent 1.00908 (6 𝑝𝑐𝑚) 446 𝑝𝑐𝑚

RAPID 1.00668 (2 𝑝𝑐𝑚) 207 𝑝𝑐𝑚

Pin-wise Fission Neutrons Relative Difference
RAPID vs. Serpent

Relative Uncertainty of 
the Serpent Results



Year Methodology Computer Code Wall-clock Time Former & Current 
Students 

2018 MRT tRAPID  
 
Smart phone 
 
1 Core 

V. Mascolino 

2018 MRT bRAPID Dr. N. Roskoff 

2017 VRS for RAPID VRS-RAPID V. Mascolino 

2016 MRT RAPID Drs. Walters & Roskoff 

2015 MRT TITAN-IR Dr. K. Royston 

2013 MRT AIMS Drs. Royston &Walters 

2009 MRT INSPCT-S Dr. W. Walters 

2007 Hybrid MC-Dtrm (electon) ADIES  
 

100’s 
1000’s 
Cores 

Dr. B. Dionne 

2005 Hybrid Dtrm-Dtrm TITAN Drs. C. Yi & Walters 

1997 Hybrid MC-Dtrm A3MCNP Drs J. Wagner &  
Shedlock 

1996 3-D  Parallel PENTRAN Drs. Sjoden & 
Kucukboyaci 

1992 2-D Vector & Parallel Dtrm   Drs. M. Hunter,  
R. Mattis & B. Petrovic 

1989 1-D Parallel Dtrm                   A few cores  

1986 1-D vector Dtrm    

 

My Journey - Particle Transport Algorithms Development 



Thanks!
Questions?


